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Model Comparison

Which model is better? P or Q?

Both models P ;Q can be wrong.

Goal: pick the better one.
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Problem Setting

P ;Q : candidate generative models that can be sampled e.g., GANs.

R : data generating distribution (unknown).

Observe Xn
i :i :d :� P ; Yn

i :i :d :� Q ; and Zn
i :i :d :� R be three sets of samples,

each of size n.

H0 : P and Q model R equally well

H1 : Q models R better:

Formulate as

H0 : D(P ;R)� D(Q ;R) = 0

H1 : D(P ;R)� D(Q ;R) > 0;

for some distance D .

Relative goodness-of-fit testing.

Statistic: Ŝn = bD(P ;R)� bD(Q ;R). Large, positive =) Q is better.
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Motivations

A common approach:

Compare bD(P ;R) and bD(Q ;R) estimated from samples (e.g., FID).

If bD(Q ;R) < bD(P ;R), conclude that Q is better than P .

Problems:

1 Noisy decision. bD is random. ! Statistical testing accounts for this.

2 Not interpretable. A scalar bD is not informative enough.

Q = LSGAN [Mao et al., 2017] P = GAN [Goodfellow et al., 2014]

1’s from Q are better. But 3’s from P are better.

Our interpretable test can output this information.
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Review: Hypothesis Testing

H0 : D(P ;R)� D(Q ;R) = 0

H1 : D(P ;R)� D(Q ;R) > 0:

Test statistic: Ŝn = bD(P ;R)� bD(Q ;R)

Null distribution pH0(Ŝn) = distribution of Ŝn when H0 is true.

T� = (1� �)-quantile of pH0 . Need to know pH0 .

Test: Reject H0 when Ŝn > T�: False rejection rate of H0 is �.
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T� = (1� �)-quantile of pH0 . Need to know pH0 .
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The Witness Function (Gretton et al., 2012)
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The Witness Function (Gretton et al., 2012)

Observe Zn = fz1; : : : ; zng � R

Observe Xn = fx1; : : : ; xng � P
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The Witness Function (Gretton et al., 2012)

Gaussian kernel k on zi

Gaussian kernel k on xi
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The Witness Function (Gretton et al., 2012)

v

�R(v) = Ez�Rk(z; v)

�P(v) = Ex�Pk(x; v)
(mean embedding of P )

7/21



The Witness Function (Gretton et al., 2012)

v

�R(v) = Ez�Rk(z; v)

�P(v) = Ex�Pk(x; v)
(mean embedding of P )

witness(v) = �R(v)� �P(v)| {z }

7/21



The Witness Function (Gretton et al., 2012)

v

MMD(P ;R) = kwitnesskRKHS
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The Unnormalized Mean Embeddings Statistic (Chwialkowski et al., 2015)

v

�R(v) = Ez�Rk(y; v)

�P(v) = Ex�Pk(x; v)
(mean embedding of P )

witness(v) = �R(v)� �P(v)| {z }
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The Unnormalized Mean Embeddings Statistic (Chwialkowski et al., 2015)

v

witness2(v) = (�R(v)� �P(v))
2| {z }
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The Unnormalized Mean Embeddings Statistic (Chwialkowski et al., 2015)

v

witness2(v) = (�R(v)� �P(v))
2| {z }

Given J test locations V := fvjgJj=1 (V gives interpretability later) ,

UME2
V (P ;R) =

1

J

JX
j=1

witness2(vj ) = U2
P :

UME2
V will be D for model comparison.
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The Unnormalized Mean Embeddings (UME) Statistic

UME2
V (P ;R) = U2

P =
1

J

JX
j=1

(�P (vj )� �R (vj ))2:

Proposition (Chwialkowski et al., 2015, Jitkrittum et al., 2016)

Assume

1 Kernel k is real analytic, integrable, and characteristic;

2 V is drawn from �, a distribution with a density.

Then, for any J > 0, any P and R,

UME2
V (P ;R) = 0 iff P = R,

�-almost surely.

Key: Evaluating witness2(v) is enough to detect the difference (in

theory).

Runtime complexity: O(Jn). J is small.
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Asymptotic Distribution of \UME2
V(P ;R) =

dU2
P

Proposition (Asymptotic distribution of dU2
P )

If P 6= R, for any V, as n !1
p
n
�
\UME2

V (P ;R)�UME2
V (P ;R)

�
d! N (0;4�2

P );

where �2
P := ( P �  R )>(CP + CR )( P �  R ) > 0.

Let  P := Ex�P [ V (x)] 2 RJ . ~ Mean of the features.

Let CP := covx�P [ V (x)] 2 RJ�J . ~Covariance of the features.

Define  V (y) :=
1p
J
(k(y; v1); : : : ; k(y; vJ ))

> 2 RJ .

Main point: When P 6= R , \UME2
V (P ;R) is

asymptotically normally distributed. Simple.

But we will need the distribution of bSn = \UME2
V (P ;R)� \UME2

V (Q ;R)

which is : : : ? 10/21
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\UME2
V(P ;R) and \UME2

V(Q ;R) are Correlated

Write U2
P = UME2(P ;R) and U2

Q = UME2(Q ;R).

Let S := U2
P �U2

Q . So H0 : S = 0 and H1 : S > 0.

Proposition (Joint distribution of dU2
P and dU2

Q )

Assume that P ;Q and R are all distinct. Under mild conditions, for any

V,

1
p
n

0@0@ dU2
PdU2
Q

1A�  U2
P

U2
Q

!1A d! N
 
0;4

 
�2
P �PQ

�PQ �2
Q

!!
.

2
p
n
�bSn � S

�
d! N

�
0;4(�2

P � 2�PQ + �2
Q )
�
.

So, the asymptotic null distribution is normal. Easy to get T�.

[1] ! use theory of multivariate U-statistics

[2] ! continuous mapping theorem. Follows from [1].
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Choose Test Locations V = fvjg
J
j=1 in Practice

Pick V so as to maximize the test power .

H0 : U2
P �U2

Q = 0 vs. H1 : U2
P �U2

Q > 0 (i.e., Q is better).

−2 0 2 4
Test statistic

pH0

Tα
pH1

For large n, argmaxV power = argmaxV f(V) where f =
mean of pH1
std of pH1

.

Call f the power criterion .
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Choose Test Locations V = fvjg
J
j=1 in Practice

Pick V so as to maximize the test power .
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Rel-UME: Difference of Two Witness Functions

Recall the witness function between P and R :

witnessP ;R(v) = Ex�Pk(x; v)� Ez�Rk(z; v)
for some positive definite kernel k(x; v).P

R

v

Assume only one test location v: Recall

UME2
V (P ;R) = witness2

P ;R (v) = (�P (v)� �R (v))2
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Where Does Each GAN Do Better?

Q = LSGAN [Mao et al., 2017]

P = GAN

[Goodfellow et al., 2014]
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Q is better at “1” and “5”. P is slightly

better at “3”. Interpretable.
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Experiment on CIFAR10

P = {airplane, cat},

Q = {automobile, cat}

(true) R = {automobile, cat}

We thank all the reviewers for constructive comments. We will revise the paper accordingly. Recall: J = number of1

test locations, P,Q = two candidate models, R = data distribution, n = sample size.2

Rev 1: Summary of Theorems 1, 2. In null hypothesis statistical testing, the test statistic is compared to a threshold3

to decide whether the null hypothesis H0 (i.e., Q is not better than P ) should be rejected. To control false rejection rate4

to be no more than α, it is common to set the threshold to the (1− α)-quantile of the (asymptotic) distribution of the5

statistic when H0 is true, where α is known as the significance level (pre-chosen). Theorem 1, 2 state the asymptotic6

distributions of the two proposed statistics, allowing us to compute the quantiles, and to derive the power criteria. Please7

see lines 132-156. We will add accompanying explanation to Theorems 1, 2, and more structure to Sec 2.8

Rev 1: Rel-UME and Rel-FSSD. Intuitively, Rel-UME determines the better model to be the one that produces9

probability mass (as measured around the test locations) closest to the test sample. Rel-FSSD does not address the10

overall probability mass, but rather the shape of the model density (please see experiment 1 and Fig 1 for further11

explanation). The structural information gained by having access to density functions allows Rel-FSSD to correctly12

determine the better model even when the P and Q are very similar (Fig 4d, perturbation only slightly above 0.3).13

However, when one model is significantly better than the other (Fig 4d, large perturbation), it is possible that directly14

examining the difference in probability masses can better detect the relative goodness of fit. This explains why15

Rel-UME has higher rejection rate (power) than Rel-FSSD J1 in Fig 4d, when perturbation is large. We note that16

in Fig 4c, the runtimes of the proposed tests increase so slowly (linear wrt n) that the curves appear flat. There is no17

saturation. We will improve the figures.18

Revs 1, 3: Advantages/disadvantages. As noted by rev 2, a key advantage of our new linear-time tests is its ability to19

produce informative features (test locations) which indicate where (in a local region) model Q fits better than model20

P . Toy problem 2 (Blobs) gives a scenario where the ability to detect local differences is crucial (see line 255) in21

determining the better model. Toy problem 3 (RBM) is where the differences are non-trivial and in high dimension. We22

show (in Fig 4d) that even in this case, relying on local differences still yields high test power. A plausible scenario23

where the new approach might require large sample sizes is when P and Q differ in ways that their differences cannot be24

seen locally i.e., spatially diffuse differences (e.g., two Gaussians with slightly different variance). We will investigate25

this scenario and include the results in the appendix of the camera-ready version.26

Revs 1, 2: GAN comparison. We agree with revs 1, 2 that Table 1 does not suggest that the proposed Rel-UME is27

better than Rel-MMD, and KID in terms of testing. However, it assures that the new approach performs at least equally28

well. We would like to emphasize that nonparametric linear-time testing is only one of the two key advantages of this29

work. The more important advantage is the discovery of informative features (hence the title of this work), which30

cannot be provided by Rel-MMD, KID, and FID. We note that there is no easy way to control false rejection rate of31

FID, hence the high rejection rate (even though H0 is true) as shown in the first row of Table 1, not to mention its high32

computational cost. We emphasize that the new tests have O(n) runtime.33

Cri. P R Q

airplane automobile cat v

Rev 2: Fig 2 from experiment 3. We plan to theoretically compare34

the test powers of the proposed tests and Rel-MMD in the future35

work with asymptotic relative efficiency. Sub-figures in Fig 2 and36

their captions are correct. There are typos in lines 312-314. Lines37

312-314 should be: Figure 2c shows the top 15 test locations as sorted38

descendingly by the criterion. Fig 2b shows test locations (i.e., cats)39

which have power criterion values close to 0, meaning that these images can be generated equally well by both models40

P,Q. We illustrate with an example analogous to experiment 3 (lines 301-316) but reduced to one dimension (figure on41

the right). The green curve represents the power criterion as a function of the test location v.42

The appearance of some airplane images in Fig 2b is indeed unexpected, since Fig 2b should contain the least informative43

features in comparing P and Q to R (i.e., cats). This is an artifact of using an off-the-shelf feature extractor (pool3 layer44

of the Inception-v3 net) that is not trained specifically for this task, combined with the fact that uninformative features45

with low distinguishing power are intrinsically noisier and harder to define. Our intention was to use the same image46

feature extractor for both experiments 3 and 4. We avoid training the extractor to keep the comparison fair in experiment47

4, since Rel-MMD, KID, and FID have no criterion to tune the feature extractor. Training a bespoke extractor (by48

maximizing the power criterion) will likely result in Fig 2b containing only cat images, and Fig 2c containing a mix of49

automobile and airplane images. We will study this setting in the future work.50

Rev 3: Fig 4 and choosing J . We would like to point out that Fig 4 does not suggest that increasing J increases false51

rejection rate. It does suggest that increasing J can increase the test power, as noted by the reviewer. In general J is52

related to the number of informative regions which provide evidence for the better fit of Q. If there are L such regions,53

then it is sufficient to set J ≤ L, since we only require “just enough” evidence to reject H0, not full evidence. In54

practice, we observe that J = 20 gives a good starting point.55

Gaussian kernel on 2048 features extracted by the Inception-v3

network at the pool3 layer.
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better than Rel-MMD, and KID in terms of testing. However, it assures that the new approach performs at least equally28

well. We would like to emphasize that nonparametric linear-time testing is only one of the two key advantages of this29

work. The more important advantage is the discovery of informative features (hence the title of this work), which30

cannot be provided by Rel-MMD, KID, and FID. We note that there is no easy way to control false rejection rate of31

FID, hence the high rejection rate (even though H0 is true) as shown in the first row of Table 1, not to mention its high32

computational cost. We emphasize that the new tests have O(n) runtime.33

Cri. P R Q

airplane automobile cat v

Rev 2: Fig 2 from experiment 3. We plan to theoretically compare34

the test powers of the proposed tests and Rel-MMD in the future35

work with asymptotic relative efficiency. Sub-figures in Fig 2 and36

their captions are correct. There are typos in lines 312-314. Lines37

312-314 should be: Figure 2c shows the top 15 test locations as sorted38

descendingly by the criterion. Fig 2b shows test locations (i.e., cats)39

which have power criterion values close to 0, meaning that these images can be generated equally well by both models40

P,Q. We illustrate with an example analogous to experiment 3 (lines 301-316) but reduced to one dimension (figure on41

the right). The green curve represents the power criterion as a function of the test location v.42

The appearance of some airplane images in Fig 2b is indeed unexpected, since Fig 2b should contain the least informative43

features in comparing P and Q to R (i.e., cats). This is an artifact of using an off-the-shelf feature extractor (pool3 layer44

of the Inception-v3 net) that is not trained specifically for this task, combined with the fact that uninformative features45

with low distinguishing power are intrinsically noisier and harder to define. Our intention was to use the same image46

feature extractor for both experiments 3 and 4. We avoid training the extractor to keep the comparison fair in experiment47

4, since Rel-MMD, KID, and FID have no criterion to tune the feature extractor. Training a bespoke extractor (by48

maximizing the power criterion) will likely result in Fig 2b containing only cat images, and Fig 2c containing a mix of49

automobile and airplane images. We will study this setting in the future work.50

Rev 3: Fig 4 and choosing J . We would like to point out that Fig 4 does not suggest that increasing J increases false51

rejection rate. It does suggest that increasing J can increase the test power, as noted by the reviewer. In general J is52

related to the number of informative regions which provide evidence for the better fit of Q. If there are L such regions,53

then it is sufficient to set J ≤ L, since we only require “just enough” evidence to reject H0, not full evidence. In54

practice, we observe that J = 20 gives a good starting point.55

Gaussian kernel on 2048 features extracted by the Inception-v3

network at the pool3 layer.

Images v with the lowest values of

f(v) � 0. =) P ;Q perform equally

well in these regions.
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Problem Setting 2

p;q : probability density functions up to the normalizer

r : unknown data generating density (unknown).

Observe Zn
i :i :d :� R and have explicit p;q.

H0 : p and q model r equally well

H1 : q models r better:

Formulate as

H0 : D(p; r)� D(q; r) = 0

H1 : D(p; r)� D(q; r) > 0;

for some distance D .

Statistic: Ŝn = bD(p; r)� bD(q; r). Large, positive =) Q is better.

Same as before except p;q are now explicit density functions. No

samples.
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The Finite Set Stein Discrepancy (FSSD) (NeurIPS 2017 Best Paper)

Recall witness(v) = Ez�r [kv(z)]� Ex�p [kv(x)]
Problem: No sample from p. Cannot estimate Ex�p [kv(x)] easily.

UME defined with this new Stein witness function is called the

Finite-Set Stein Discrepancy (Jitkrittum et al., 2017).

Tp is called a Stein operator.

(Tpkv)(z) =
1

p(z)

d

dz
[kv(z)p(z)];

which is independent of the normalizer of p.

Can construct Rel-FSSD test similarly: optimize V to show where Q

is better, asymptotic normality, etc.
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FSSD is a Proper Discrepancy Measure

FSSD2(p; r) = 1
dJ

PJ
j=1 kgp;r(vj )k2

2 where

gp;r(v) = Ez�r
h

1
p(z)

d
dz [kv(z)p(z)]

i
(Stein witness).

Theorem (FSSD is a discrepancy measure (Jitkrittum et al., 2017))

Main conditions:

1 (Nice kernel) Kernel k is C0-universal, and real analytic e.g.,

Gaussian kernel.

2 (Vanishing boundary) limkxk!1 p(x)kv(x) = 0.

3 (Avoid “blind spots”) Locations v1; : : : ; vJ � � which has a density.

Then, for any J � 1, �-almost surely,

FSSD2 = 0 () p = r.

Summary: Evaluating the witness at random locations is sufficient to

detect the discrepancy between p; r.
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Relative FSSD Witness Function

P
Q
R
witnessP,R
witnessQ,R
Power Cri.

Unlike UME which cares about probability mass, FSSD cares about

shape of density functions .

In FSSD, p;q are represented by rx log p(x) and ry log q(y) (instead

of samples).
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Summary
Propose a model comparison test Relative UME :

Statistical testing: account for randomness of the distance

Linear-time: runtime complexity = O(n)

Interpretable: tells where Q is better P (vice versa)

Another variant Relative FSSD : P ;Q are explicit (unnormalized) density

functions. No need to sample.

Main reference:

Informative Features for Model Comparison

W. Jitkrittum, H. Kanagawa, P. Sangkloy, J. Hays, B. Schölkopf, A. Gretton

NeurIPS 2018

Python code: https://github.com/wittawatj/kernel-mod

Extension: relative test for comparing latent-variable models.

A Kernel Stein Test for Comparing Latent Variable Models

H. Kanagawa, W. Jitkrittum, L. Mackey, K. Fukumizu, A. Gretton

https://arxiv.org/abs/1907.00586
21/21
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Questions?

Thank you
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Experiment on CelebA

Real smiling faces (RS) Real non-smiling faces (NS)

Two datasets for training two models.

Center-cropped CelebA images to 64� 64 pixels.
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Experiment on CelebA

Model for smiling faces (S) Model for non-smiling faces (N)

Trained with DCGAN. Get two models.
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Experiment on CelebA

Report avg rejection rate (e.g., rate of claiming Q is better).

Fréchet Inception Distance (FID) (Heusel et al., 2017). Not a test. If

FID(P ;R) > FID(Q ;R), claim Q is better.

RS = real smiling images. RN = real non-smiling images.

RM = mixture of RS and RN

Case P Q R Truth Rel-UME Rel-

MMD

FID FID diff.

J10 J40

1. S S RS Not rej 0.0 0.0 0.0 0.53 -0.045 � 0.52

2. RS RS RS Not rej 0.0 0.0 0.03 0.7 0.04 � 0.19

3. S N RN Rej 0.57 1.0 1.0 1.0 5.25 � 0.75

4. S N RM Not rej 0.0 0.0 0.0 0.0 -4.55 � 0.82

FID claims Q is better when the two models are equally good. Not

account for uncertainty.

All have high test power when Q is indeed better.
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Experiment: 2d Blobs
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Rewriting UME
V := fv1; : : : ; vJg = J test locations

UME2
V (P ;R) =

1

J

JX
j=1

(�P (vj )� �R (vj ))
2

=
1

J









0B@ �P (v1)

...

�P (vJ )

1CA�
0B@ �R (v1)

...

�R (vJ )

1CA









2

2

=
1

J








Ex�P

0B@ k(x; v1)
...

k(x; vJ )

1CA� Ez�R

0B@ k(z; v1)
...

k(z; vJ )

1CA









2

2

Let  V (x) :=
1p
J
(k(x; v1); : : : ; k(x; vJ ))

> 2 RJ . Equivalently,

UME2
V (P ;R) =



Ex�P [ V (x)]� Ez�R [ V (z)]


2

2
:

Empirical \UME2(P ;R) = replace E’s above with 1
n

Pn
i=1.
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\UME2
V(P ;R) and \UME2

V(Q ;R) are Correlated

Write U2
P = UME2(P ;R) and U2

Q = UME2(Q ;R).

Let S := U2
P �U2

Q . So H0 : S = 0 and H1 : S > 0.

Let CS
V := covy�S [ V (y)] where S 2 fP ;Q ;Rg.

Let M :=

 
 P
V �  R

V 0

0  
Q
W �  R

W

!
.

Let

 
�2
P �PQ

�PQ �2
Q

!
:= M>

 
CP
V + CR

V CR
V

(CR
V )> CQ

W + CR
W

!
M

Proposition (Joint distribution of dU2
P and dU2

Q )

Assume that P ;Q and R are all distinct. Under mild conditions,

1
p
n

0@0@ dU2
PdU2
Q

1A�  U2
P

U2
Q

!1A d! N
 
0;4

 
�2
P �PQ

�PQ �2
Q

!!
;

2
p
n
�bSn � S

�
d! N

�
0;4(�2

P � 2�PQ + �2
Q )
�
.

So, asymptotic null distribution is normal. Easy to get T�.
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Experiment: Mean Shift

Model 1: p = N ([0:5;0; : : : ;0]; I): Model 2: q = N ([1;0; : : :0]; I)

Data distribution r = N (0; I). Defined on R50.

Set � = 0:05. Should not reject H0.
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MMD runs in O(n2) time.

Proposed Rel-UME and Rel-FSSD run in O(n).

29/21



Experiment: Gaussian-Bernoulli Restricted Boltzmann Machine

p;q; r are all RBM models. d = 20 dimensions. n = 2000.

gB;b;c(x) :=
1
Z

P
h exp

�
x>Bh+ b>x+ c>h� 1

2kxk2
�

where

h 2 f�1;1g5.

Define r(x) := gB;b;c(x) for some randomly drawn B;b; c.

Let p(x) := gBp ;b;c(x); and q(x) := gBq ;b;c(x).

Bp = B but with � added to its first entry B1;1

Bq = B but with 0.3 added to its first entry B1;1

If � > 0:3, q is better. Should reject H0.
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Experiment: Gaussian-Bernoulli Restricted Boltzmann Machine
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Models and and true distribution are very close. Difficult.

FSSD has access to the density. Higher power than UME, MMD (rely

on samples).
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What is Tpkv?

Recall Stein witness(v) = Ey�q(Tpkv)(y)�((((((
((

Ex�p(Tpkv)(x)

Ex�p [(Tpkv)(x)] =
Z 1

�1

�
1

��
�p(x)

d

dx
[kv(x)p(x)]

�
��
�p(x)dx

=

Z 1

�1
d

dx
[kv(x)p(x)]dx

= [kv(x)p(x)]
x=1
x=�1

= 0

(assume limjxj!1 k(v; x)p(x))
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