Interpretable Comparison of Generative Models

Wittawat Jitkrittum

Max Planck Institute for Intelligent Systems
Google Research
wittawat.com

Heishiro Kanagawa, Patsorn Sangkloy, James Hays, Bernhard Schölkopf, Arthur Gretton

EURECOM, Data Science Seminar 5 November 2020

Model Comparison

Which model is better? P or O?

- Both models P, Q can be wrong.
- **Goal**: pick the better one.

Outline

- 1 Problem setting
- 2 Motivations for the proposed test
- 3 Hypothesis testing 101
- 4 The Unnormalized Mean Embeddings (UME) statistic (3-sample test)
 - 1 Asymptotic distributions
 - 2 Interpretability
- 5 Experiments
- 6 The Finite Set Stein Discrepancy (FSSD) statistic (2 density models and 1 set of samples)

- \blacksquare *P*, *Q*: candidate generative models that can be sampled e.g., GANs.
- \blacksquare R: data generating distribution (unknown).
- Observe $X_n \overset{i.i.d.}{\sim} P$, $Y_n \overset{i.i.d.}{\sim} Q$, and $Z_n \overset{i.i.d.}{\sim} R$ be three sets of samples, each of size n.

$$H_0$$
: P and Q model R equally well H_1 : Q models R better.

Formulate as

$$H_0: D(P, R) - D(Q, R) = 0$$

 $H_1: D(P, R) - D(Q, R) > 0$

- Relative goodness-of-fit testing.
- Statistic: $\hat{S}_n = \hat{D}(P,R) \hat{D}(Q,R)$. Large, positive $\implies Q$ is better.

- \blacksquare *P*, *Q*: candidate generative models that can be sampled e.g., GANs.
- \blacksquare R: data generating distribution (unknown).
- Observe $X_n \overset{i.i.d.}{\sim} P$, $Y_n \overset{i.i.d.}{\sim} Q$, and $Z_n \overset{i.i.d.}{\sim} R$ be three sets of samples, each of size n.

 H_0 : P and Q model R equally well H_1 : Q models R better.

Formulate as

$$H_0: D(P,R) - D(Q,R) = 0$$

 $H_1: D(P,R) - D(Q,R) > 0$

- Relative goodness-of-fit testing.
- Statistic: $\hat{S}_n = \hat{D}(P,R) \hat{D}(Q,R)$. Large, positive $\implies Q$ is better.

- \blacksquare *P*, *Q*: candidate generative models that can be sampled e.g., GANs.
- \blacksquare *R* : data generating distribution (unknown).
- Observe $X_n \overset{i.i.d.}{\sim} P$, $Y_n \overset{i.i.d.}{\sim} Q$, and $Z_n \overset{i.i.d.}{\sim} R$ be three sets of samples, each of size n.

 H_0 : P and Q model R equally well

 H_1 : Q models R better.

Formulate as

$$H_0: D(P,R) - D(Q,R) = 0$$

 $H_1: D(P,R) - D(Q,R) > 0$

- Relative goodness-of-fit testing.
- Statistic: $\hat{S}_n = \hat{D}(P,R) \hat{D}(Q,R)$. Large, positive $\implies Q$ is better.

- \blacksquare *P*, *Q*: candidate generative models that can be sampled e.g., GANs.
- \blacksquare *R* : data generating distribution (unknown).
- Observe $X_n \overset{i.i.d.}{\sim} P$, $Y_n \overset{i.i.d.}{\sim} Q$, and $Z_n \overset{i.i.d.}{\sim} R$ be three sets of samples, each of size n.

 H_0 : P and Q model R equally well

 H_1 : Q models R better.

Formulate as

$$H_0: D(P, R) - D(Q, R) = 0$$

 $H_1: D(P, R) - D(Q, R) > 0$

- Relative goodness-of-fit testing.
- Statistic: $\hat{S}_n = \hat{D}(P,R) \hat{D}(Q,R)$. Large, positive $\implies Q$ is better.

- \blacksquare *P*, *Q*: candidate generative models that can be sampled e.g., GANs.
- \blacksquare R: data generating distribution (unknown).
- Observe $X_n \overset{i.i.d.}{\sim} P$, $Y_n \overset{i.i.d.}{\sim} Q$, and $Z_n \overset{i.i.d.}{\sim} R$ be three sets of samples, each of size n.

 H_0 : P and Q model R equally well H_1 : Q models R better.

Formulate as

$$H_0: D(P, R) - D(Q, R) = 0$$

 $H_1: D(P, R) - D(Q, R) > 0$

- Relative goodness-of-fit testing.
- Statistic: $\hat{S}_n = \widehat{D}(P, R) \widehat{D}(Q, R)$. Large, positive $\implies Q$ is better.

A common approach:

Compare $\widehat{D}(P,R)$ and $\widehat{D}(Q,R)$ estimated from samples (e.g., FID). If $\widehat{D}(Q,R) < \widehat{D}(P,R)$, conclude that Q is better than P.

Problems

- 1 Noisy decision. \widehat{D} is random. \rightarrow Statistical testing accounts for this
- Not interpretable. A scalar \widehat{D} is not informative enough.

$$Q={
m LSGAN}$$
 [Mao et al., 2017] $P={
m GAN}$ [Goodfellow et al., 2014]

- 1's from O are better. But 3's from P are better.
- Our interpretable test can output this information

A common approach:

Compare $\widehat{D}(P,R)$ and $\widehat{D}(Q,R)$ estimated from samples (e.g., FID). If $\widehat{D}(Q,R) < \widehat{D}(P,R)$, conclude that Q is better than P.

Problems:

- 1 Noisy decision. \widehat{D} is random. \rightarrow Statistical testing accounts for this.
- Not interpretable. A scalar \widehat{D} is not informative enough

$$Q={
m LSGAN}$$
 [Mao et al., 2017] $P={
m GAN}$ [Goodfellow et al., 2014]

- 1's from O are better. But 3's from P are better.
- Our interpretable test can output this information.

A common approach:

Compare $\widehat{D}(P,R)$ and $\widehat{D}(Q,R)$ estimated from samples (e.g., FID). If $\widehat{D}(Q,R) < \widehat{D}(P,R)$, conclude that Q is better than P.

Problems:

- 1 Noisy decision. \widehat{D} is random. \rightarrow Statistical testing accounts for this.
- Not interpretable. A scalar \widehat{D} is not informative enough.

$$Q={
m LSGAN}$$
 [Mao et al., 2017] $P={
m GAN}$ [Goodfellow et al., 2014]

- 1's from O are better. But 3's from P are better.
- Our interpretable test can output this information

A common approach:

Compare $\widehat{D}(P,R)$ and $\widehat{D}(Q,R)$ estimated from samples (e.g., FID). If $\widehat{D}(Q,R) < \widehat{D}(P,R)$, conclude that Q is better than P.

Problems:

- 1 Noisy decision. \widehat{D} is random. \rightarrow Statistical testing accounts for this.
- 2 Not interpretable. A scalar \hat{D} is not informative enough.

$$Q = LSGAN$$
 [Mao et al., 2017]

P = GAN [Goodfellow et al., 2014]

- 1's from *Q* are better. But 3's from *P* are better.
- Our interpretable test can output this information.

$$H_0: D(P, R) - D(Q, R) = 0$$

 $H_1: D(P, R) - D(Q, R) > 0.$

Test statistic:
$$\hat{S}_n = \widehat{D}(P, R) - \widehat{D}(Q, R)$$

$$H_0: D(P, R) - D(Q, R) = 0$$

 $H_1: D(P, R) - D(Q, R) > 0.$

Test statistic: $\hat{S}_n = \widehat{D}(P,R) - \widehat{D}(Q,R)$

■ Null distribution $p_{H_0}(\hat{S}_n) = \text{distribution of } \hat{S}_n \text{ when } H_0 \text{ is true.}$

$$H_0: D(P, R) - D(Q, R) = 0$$

 $H_1: D(P, R) - D(Q, R) > 0.$

Test statistic: $\hat{S}_n = \widehat{D}(P,R) - \widehat{D}(Q,R)$

■ Null distribution $p_{H_0}(\hat{S}_n) = \text{distribution of } \hat{S}_n \text{ when } H_0 \text{ is true.}$

$$H_0: D(P, R) - D(Q, R) = 0$$

 $H_1: D(P, R) - D(Q, R) > 0.$

- Null distribution $p_{H_0}(\hat{S}_n) = \text{distribution of } \hat{S}_n \text{ when } H_0 \text{ is true.}$
- $T_{\alpha} = (1 \alpha)$ -quantile of p_{H_0} . Need to know p_{H_0} .

$$H_0: D(P, R) - D(Q, R) = 0$$

 $H_1: D(P, R) - D(Q, R) > 0.$

- Null distribution $p_{H_0}(\hat{S}_n) = \text{distribution of } \hat{S}_n \text{ when } H_0 \text{ is true.}$
- $T_{\alpha} = (1 \alpha)$ -quantile of p_{H_0} . Need to know p_{H_0} .

$$H_0: D(P, R) - D(Q, R) = 0$$

 $H_1: D(P, R) - D(Q, R) > 0.$

- Null distribution $p_{H_0}(\hat{S}_n) = \text{distribution of } \hat{S}_n \text{ when } H_0 \text{ is true.}$
- lacksquare $T_{lpha}=(1-lpha)$ -quantile of p_{H_0} . Need to know p_{H_0} .
- Test: Reject H_0 when $\hat{S}_n > T_{\alpha}$. False rejection rate of H_0 is α .

$$H_0: D(P, R) - D(Q, R) = 0$$

 $H_1: D(P, R) - D(Q, R) > 0.$

- Null distribution $p_{H_0}(\hat{S}_n) = \text{distribution of } \hat{S}_n \text{ when } H_0 \text{ is true.}$
- lacksquare $T_{lpha}=(1-lpha)$ -quantile of p_{H_0} . Need to know p_{H_0} .
- Test: Reject H_0 when $\hat{S}_n > T_{\alpha}$. False rejection rate of H_0 is α .

The Unnormalized Mean Embeddings Statistic (Chwialkowski et al., 2015)

The Unnormalized Mean Embeddings Statistic (Chwialkowski et al., 2015)

The Unnormalized Mean Embeddings Statistic (Chwialkowski et al., 2015)

lacksquare Given J test locations $V:=\{\mathbf{v}_j\}_{j=1}^J$ (V gives interpretability later) ,

$$\mathsf{UME}^2_V(P,R) = rac{1}{J} \sum_{i=1}^J \mathrm{witness}^2(\mathbf{v}_j) = U_P^2.$$

■ UME_V^2 will be *D* for model comparison.

$${\sf UME}_V^2({P,R}) = U_P^2 = rac{1}{J} \sum_{j=1}^J (\mu_{P}({f v}_j) - \mu_{R}({f v}_j))^2.$$

Proposition (Chwialkowski et al., 2015, Jitkrittum et al., 2016)

Assume

- 1 Kernel k is real analytic, integrable, and characteristic;
- 2 V is drawn from η , a distribution with a density.

Then, for any J > 0, any P and R,

$$UME_V^2(P,R) = 0 \text{ iff } P = R,$$

η -almost surely

- **Key**: Evaluating witness²(v) is enough to detect the difference (in theory).
- Runtime complexity: $\mathcal{O}(Jn)$. J is small.

$${\sf UME}_V^2({P,R}) = U_P^2 = rac{1}{J} \sum_{j=1}^J (\mu_{P}({f v}_j) - \mu_{R}({f v}_j))^2.$$

Proposition (Chwialkowski et al., 2015, Jitkrittum et al., 2016)

Assume

- 1 Kernel k is real analytic, integrable, and characteristic;
- 2 *V* is drawn from η , a distribution with a density.

Then, for any J > 0, any P and R,

$$\mathrm{UME}_V^2(P,R)=0 \; iff \, P=R$$
 ,

η -almost surely

- **Key**: Evaluating witness²(v) is enough to detect the difference (in theory).
- Runtime complexity: $\mathcal{O}(Jn)$. J is small.

$${\sf UME}_V^2({P,R}) = U_P^2 = rac{1}{J} \sum_{j=1}^J (\mu_{P}({f v}_j) - \mu_{R}({f v}_j))^2.$$

Proposition (Chwialkowski et al., 2015, Jitkrittum et al., 2016)

Assume

- 1 Kernel k is real analytic, integrable, and characteristic;
- 2 *V* is drawn from η , a distribution with a density.

Then, for any J > 0, any P and R,

$$UME_V^2(P,R) = 0 \text{ iff } P = R,$$

η -almost surely.

- **Key**: Evaluating witness²(v) is enough to detect the difference (in theory).
- Runtime complexity: $\mathcal{O}(Jn)$. J is small.

$$\mathsf{UME}_V^2(P,R) = U_P^2 = \frac{1}{J} \sum_{j=1}^J (\mu_P(\mathbf{v}_j) - \mu_R(\mathbf{v}_j))^2.$$

Proposition (Chwialkowski et al., 2015, Jitkrittum et al., 2016)

Assume

- 1 Kernel k is real analytic, integrable, and characteristic;
- 2 *V* is drawn from η , a distribution with a density.

Then, for any J > 0, any P and R,

$$UME_V^2(P,R) = 0 \text{ iff } P = R,$$

η -almost surely.

- **Key**: Evaluating witness $^2(\mathbf{v})$ is enough to detect the difference (in theory).
- Runtime complexity: $\mathcal{O}(Jn)$. J is small.

Asymptotic Distribution of $UME_V^2(P,R) = \widehat{U_P^2}$

Proposition (Asymptotic distribution of $\widehat{U_P^2}$)

If $P \neq R$, for any V, as $n \rightarrow \infty$

$$\sqrt{n}\left[\widehat{\mathsf{UME}^2_V}(P,R) - \mathsf{UME}^2_V(P,R)
ight] \overset{d}{ o} \mathcal{N}(0,4\zeta_{ extbf{P}}^2),$$

where
$$\zeta_{\mathbf{P}}^2 := (\psi^{\mathbf{P}} - \psi^R)^{\top} (C^{\mathbf{P}} + C^R) (\psi^{\mathbf{P}} - \psi^R) > 0$$
.

- Let $\psi^P := \mathbb{E}_{\mathbf{x} \sim P}[\psi_V(\mathbf{x})] \in \mathbb{R}^J$. ~ Mean of the features.
- Let $C^P := \operatorname{cov}_{\mathbf{x} \sim P}[\psi_V(\mathbf{x})] \in \mathbb{R}^{J \times J}$. ~Covariance of the features.
- lacksquare Define $\psi_V(\mathbf{y}) := rac{1}{\sqrt{J}} \left(k(\mathbf{y}, \mathbf{v}_1), \ldots, k(\mathbf{y}, \mathbf{v}_J)
 ight)^{ op} \in \mathbb{R}^J$

Main point: When $P \neq R$, $UME_V^2(P, R)$ is asymptotically normally distributed. Simple

But we will need the distribution of $\widehat{S}_n = \mathrm{UME}_V^2(P,R) - \mathrm{UME}_V^2(Q,R)$ which is . . . ?

Asymptotic Distribution of $UME_V^2(P,R) = \widehat{U_P^2}$

Proposition (Asymptotic distribution of $\widehat{U_P^2}$)

If $P \neq R$, for any V, as $n \rightarrow \infty$

$$\sqrt{n}\left[\widehat{\mathsf{UME}^2_V}(P,R) - \mathsf{UME}^2_V(P,R)
ight] \overset{d}{ o} \mathcal{N}(0,4\zeta_{ extbf{P}}^2),$$

where
$$\zeta_{\mathbf{P}}^2 := (\psi^{\mathbf{P}} - \psi^R)^\top (C^{\mathbf{P}} + C^R)(\psi^{\mathbf{P}} - \psi^R) > 0$$
.

- Let $\psi^{\mathbf{P}} := \mathbb{E}_{\mathbf{x} \sim \mathbf{P}}[\psi_V(\mathbf{x})] \in \mathbb{R}^J$. ~ Mean of the features.
- Let $C^{\mathbf{P}} := \operatorname{cov}_{\mathbf{x} \sim \mathbf{P}}[\psi_V(\mathbf{x})] \in \mathbb{R}^{J \times J}$. ~Covariance of the features.
- Define $\psi_V(\mathbf{y}) := \frac{1}{\sqrt{J}} \left(k(\mathbf{y}, \mathbf{v}_1), \dots, k(\mathbf{y}, \mathbf{v}_J) \right)^\top \in \mathbb{R}^J.$

Main point: When $P \neq R$, $UME_V^2(P, R)$ is asymptotically normally distributed. Simple

But we will need the distribution of $\widehat{S}_n = \mathrm{UME}_V^2(P,R) - \mathrm{UME}_V^2(Q,R)$ which is . . . ?

Asymptotic Distribution of $UME_V^2(P,R) = \widehat{U_P^2}$

Proposition (Asymptotic distribution of $\widehat{U_P^2}$)

If $P \neq R$, for any V, as $n \rightarrow \infty$

$$\sqrt{n}\left[\widehat{\mathsf{UME}^2_V}(P,R) - \mathsf{UME}^2_V(P,R)
ight] \overset{d}{ o} \mathcal{N}(0,4\zeta_{ extbf{P}}^2),$$

where
$$\zeta_{\mathbf{P}}^2 := (\psi^{\mathbf{P}} - \psi^R)^{\top} (C^{\mathbf{P}} + C^R) (\psi^{\mathbf{P}} - \psi^R) > 0$$
.

- Let $\psi^{\mathbf{P}} := \mathbb{E}_{\mathbf{x} \sim \mathbf{P}}[\psi_V(\mathbf{x})] \in \mathbb{R}^J$. ~ Mean of the features.
- Let $C^{\mathbf{P}} := \operatorname{cov}_{\mathbf{x} \sim \mathbf{P}}[\psi_V(\mathbf{x})] \in \mathbb{R}^{J \times J}$. ~Covariance of the features.
- Define $\psi_V(\mathbf{y}) := \frac{1}{\sqrt{J}} \left(k(\mathbf{y}, \mathbf{v_1}), \dots, k(\mathbf{y}, \mathbf{v_J}) \right)^{\top} \in \mathbb{R}^J.$

Main point: When $P \neq R$, $UME_V^2(P, R)$ is asymptotically normally distributed. Simple.

But we will need the distribution of $\widehat{S}_n = \mathrm{UME}_V^2(P,R) - \mathrm{UME}_V^2(Q,R)$ which is . . . ?

Asymptotic Distribution of $UME_V^2(P, R) = \widehat{U_P^2}$

Proposition (Asymptotic distribution of U_p^2)

If $P \neq R$, for any V, as $n \to \infty$

$$\sqrt{n}\left[\widehat{\mathsf{UME}_V^2}(P,R) - \mathsf{UME}_V^2(P,R)
ight] \overset{d}{ o} \mathcal{N}(0,4\zeta_{\textcolor{red}{P}}^2),$$

where
$$\zeta_{\mathbf{P}}^2 := (\psi^{\mathbf{P}} - \psi^R)^{\top} (C^{\mathbf{P}} + C^R) (\psi^{\mathbf{P}} - \psi^R) > 0$$
.

- Let $\psi^P := \mathbb{E}_{\mathbf{x} \sim P}[\psi_V(\mathbf{x})] \in \mathbb{R}^J$. ~ Mean of the features.
- Let $C^{\mathbf{P}} := \operatorname{cov}_{\mathbf{x} \sim \mathbf{P}}[\psi_V(\mathbf{x})] \in \mathbb{R}^{J \times J}$. ~Covariance of the features.
- Define $\psi_V(\mathbf{y}) := \frac{1}{\sqrt{J}} \left(k(\mathbf{y}, \mathbf{v_1}), \dots, k(\mathbf{y}, \mathbf{v_J}) \right)^{\top} \in \mathbb{R}^J$.

Main point: When $P \neq R$, $UME_V^2(P, R)$ is asymptotically normally distributed. Simple.

■ But we will need the distribution of $\widehat{S}_n = \widehat{\mathrm{UME}}_V^2(P,R) - \widehat{\mathrm{UME}}_V^2(Q,R)$ which is . . . ?

- Write $U_{\mathbb{P}}^2 = \mathrm{UME}^2(\mathbb{P}, \mathbb{R})$ and $U_{\mathbb{Q}}^2 = \mathrm{UME}^2(\mathbb{Q}, \mathbb{R})$.
- Let $S := U_{\mathbb{P}}^2 U_{\mathbb{Q}}^2$. So $H_0 : S = 0$ and $H_1 : S > 0$.

Proposition (Joint distribution of U_P^2 and U_Q^2)

Assume that P, Q and R are all distinct. Under mild conditions, for any V_{ℓ}

$$1 \hspace{-0.1cm} \begin{array}{c} \sqrt{n} \left(\left(\begin{array}{c} \widehat{U_P^2} \\ \widehat{U_O^2} \end{array} \right) - \left(\begin{array}{c} U_P^2 \\ U_Q^2 \end{array} \right) \right) \stackrel{d}{\to} \mathcal{N} \left(\mathbf{0}, 4 \left(\begin{array}{cc} \zeta_P^2 & \zeta_{PQ} \\ \zeta_{PQ} & \zeta_Q^2 \end{array} \right) \right). \end{aligned}$$

2
$$\sqrt{n}\left(\widehat{S}_n - S\right) \stackrel{d}{\to} \mathcal{N}\left(0, 4(\zeta_P^2 - 2\zeta_{PQ} + \zeta_Q^2)\right)$$
.

- \blacksquare [1] \rightarrow use theory of multivariate U-statistics
- \blacksquare [2] \rightarrow continuous mapping theorem. Follows from [1].

- Write $U_{\mathbb{P}}^2 = \mathrm{UME}^2(\mathbb{P}, \mathbb{R})$ and $U_{\mathbb{Q}}^2 = \mathrm{UME}^2(\mathbb{Q}, \mathbb{R})$.
- Let $S := U_P^2 U_Q^2$. So $H_0 : S = 0$ and $H_1 : S > 0$.

Proposition (Joint distribution of $\widehat{U_P^2}$ and $\widehat{U_O^2}$)

Assume that P, Q and R are all distinct. Under mild conditions, for any V,

$$\boxed{1} \ \sqrt{n} \left(\left(\begin{array}{c} \widehat{U_{\textbf{P}}^2} \\ \widehat{U_Q^2} \end{array} \right) - \left(\begin{array}{c} U_{\textbf{P}}^2 \\ U_Q^2 \end{array} \right) \right) \overset{d}{\to} \mathcal{N} \left(\textbf{0}, 4 \left(\begin{array}{cc} \zeta_{\textbf{P}}^2 & \zeta_{\textbf{P}Q} \\ \zeta_{\textbf{P}Q} & \zeta_Q^2 \end{array} \right) \right).$$

2
$$\sqrt{n}\left(\widehat{S}_n-S
ight)\stackrel{d}{
ightarrow}\mathcal{N}\left(0,4(\zeta_{I\!\!P}^2-2\zeta_{I\!\!PQ}+\zeta_Q^2)
ight).$$

- \blacksquare [1] \rightarrow use theory of multivariate U-statistics
- \blacksquare [2] \rightarrow continuous mapping theorem. Follows from [1].

- Write $U_{\mathbb{P}}^2 = \mathrm{UME}^2(\mathbb{P}, \mathbb{R})$ and $U_{\mathbb{Q}}^2 = \mathrm{UME}^2(\mathbb{Q}, \mathbb{R})$.
- Let $S := U_P^2 U_Q^2$. So $H_0 : S = 0$ and $H_1 : S > 0$.

Proposition (Joint distribution of $\widehat{U_P^2}$ and $\widehat{U_O^2}$)

Assume that P, Q and R are all distinct. Under mild conditions, for any V,

$$\boxed{1} \ \sqrt{n} \left(\left(\begin{array}{c} \widehat{U_{\mathbf{P}}^2} \\ \widehat{U_Q^2} \end{array} \right) - \left(\begin{array}{c} U_{\mathbf{P}}^2 \\ U_Q^2 \end{array} \right) \right) \overset{d}{\to} \mathcal{N} \left(\mathbf{0}, 4 \left(\begin{array}{cc} \zeta_{\mathbf{P}}^2 & \zeta_{\mathbf{P}Q} \\ \zeta_{\mathbf{P}Q} & \zeta_Q^2 \end{array} \right) \right).$$

2
$$\sqrt{n}\left(\widehat{S}_n-S
ight)\stackrel{d}{
ightarrow}\mathcal{N}\left(0,4(\zeta_{I\!\!P}^2-2\zeta_{I\!\!PQ}+\zeta_Q^2)
ight).$$

- \blacksquare [1] \rightarrow use theory of multivariate U-statistics
- \blacksquare [2] \rightarrow continuous mapping theorem. Follows from [1].

- Write $U_{\mathbb{P}}^2 = \mathrm{UME}^2(\mathbb{P}, \mathbb{R})$ and $U_{\mathbb{Q}}^2 = \mathrm{UME}^2(\mathbb{Q}, \mathbb{R})$.
- Let $S := U_{\mathbb{P}}^2 U_{\mathbb{Q}}^2$. So $H_0 : S = 0$ and $H_1 : S > 0$.

Proposition (Joint distribution of $\widehat{U_P^2}$ and $\widehat{U_O^2}$)

Assume that P, Q and R are all distinct. Under mild conditions, for any V,

$$\boxed{1} \ \sqrt{n} \left(\left(\begin{array}{c} \widehat{U_{\mathbf{P}}^2} \\ \widehat{U_Q^2} \end{array} \right) - \left(\begin{array}{c} U_{\mathbf{P}}^2 \\ U_Q^2 \end{array} \right) \right) \overset{d}{\to} \mathcal{N} \left(\mathbf{0}, 4 \left(\begin{array}{cc} \zeta_{\mathbf{P}}^2 & \zeta_{\mathbf{P}Q} \\ \zeta_{\mathbf{P}Q} & \zeta_Q^2 \end{array} \right) \right).$$

2
$$\sqrt{n}\left(\widehat{S}_n-S
ight)\stackrel{d}{
ightarrow}\mathcal{N}\left(0,4(\zeta_{I\!\!P}^2-2\zeta_{I\!\!PQ}+\zeta_Q^2)
ight).$$

- [1] \rightarrow use theory of multivariate U-statistics
- \blacksquare [2] \rightarrow continuous mapping theorem. Follows from [1].

- Write $U_{\mathbb{P}}^2 = \mathrm{UME}^2(\mathbb{P}, \mathbb{R})$ and $U_{\mathbb{Q}}^2 = \mathrm{UME}^2(\mathbb{Q}, \mathbb{R})$.
- Let $S := U_{\mathbb{P}}^2 U_{\mathbb{Q}}^2$. So $H_0 : S = 0$ and $H_1 : S > 0$.

Proposition (Joint distribution of $\widehat{U_P^2}$ and $\widehat{U_O^2}$)

Assume that P, Q and R are all distinct. Under mild conditions, for any V,

$$\boxed{1} \ \sqrt{n} \left(\left(\begin{array}{c} \widehat{U_{\mathbf{P}}^2} \\ \widehat{U_Q^2} \end{array} \right) - \left(\begin{array}{c} U_{\mathbf{P}}^2 \\ U_Q^2 \end{array} \right) \right) \overset{d}{\to} \mathcal{N} \left(\mathbf{0}, 4 \left(\begin{array}{cc} \zeta_{\mathbf{P}}^2 & \zeta_{\mathbf{P}Q} \\ \zeta_{\mathbf{P}Q} & \zeta_Q^2 \end{array} \right) \right).$$

2
$$\sqrt{n}\left(\widehat{S}_n-S
ight)\stackrel{d}{
ightarrow}\mathcal{N}\left(0,4(\zeta_{I\!\!P}^2-2\zeta_{I\!\!PQ}+\zeta_Q^2)
ight).$$

- lacksquare [1] ightarrow use theory of multivariate U-statistics
- [2] \rightarrow continuous mapping theorem. Follows from [1].

- \blacksquare Pick V so as to maximize the test power.
- $\blacksquare H_0: U_P^2 U_O^2 = 0 \text{ vs. } H_1: U_P^2 U_O^2 > 0 \text{ (i.e., } Q \text{ is better)}.$

- \blacksquare Pick V so as to maximize the test power.
- $H_0: U_P^2 U_Q^2 = 0$ vs. $H_1: U_P^2 U_Q^2 > 0$ (i.e., Q is better).

Under $H_0: U_p^2 - U_0^2 = 0$,

- \blacksquare Pick V so as to maximize the test power.
- $H_0: U_P^2 U_O^2 = 0$ vs. $H_1: U_P^2 U_O^2 > 0$ (i.e., Q is better).

Under $H_0: U_p^2 - U_0^2 = 0$,

- \blacksquare Pick V so as to maximize the test power.
- $H_0: U_P^2 U_Q^2 = 0$ vs. $H_1: U_P^2 U_Q^2 > 0$ (i.e., Q is better).

Under $H_1: U_p^2 - U_0^2 > 0$,

- \blacksquare Pick V so as to maximize the test power.
- $H_0: U_{\mathbf{P}}^2 U_{Q}^2 = 0$ vs. $H_1: U_{\mathbf{P}}^2 U_{Q}^2 > 0$ (i.e., Q is better).

- \blacksquare Pick V so as to maximize the test power.
- $\blacksquare H_0: U_P^2 U_O^2 = 0 \text{ vs. } H_1: U_P^2 U_O^2 > 0 \text{ (i.e., } Q \text{ is better)}.$

- Split the data into tr and te. Optimize *V* on tr. Test on te.

- \blacksquare Pick V so as to maximize the test power.
- $H_0: U_P^2 U_O^2 = 0$ vs. $H_1: U_P^2 U_O^2 > 0$ (i.e., Q is better).

- \blacksquare Split the data into tr and te. Optimize V on tr. Test on te.
- $lue{}$ Optimized V show where Q is better than P.

- \blacksquare Pick V so as to maximize the test power.
- $H_0: U_{\mathbf{P}}^2 U_{Q}^2 = 0$ vs. $H_1: U_{\mathbf{P}}^2 U_{Q}^2 > 0$ (i.e., Q is better).

- \blacksquare Split the data into tr and te. Optimize V on tr. Test on te.
- lacksquare Optimized *V* show where *Q* is better than *P*.
- For large n, $\arg \max_V power = \arg \max_V f(V)$ where $f = \frac{\text{mean of } p_{H_1}}{\text{std of } p_{H_1}}$. Call f the power criterion.

Recall the witness function between P and R:

Assume only one test location \mathbf{v} . Recall

$$UME_V^2(P, R) = witness_{P,R}^2(\mathbf{v}) = (\mu_P(\mathbf{v}) - \mu_R(\mathbf{v}))^2$$

■ Power criterion(\mathbf{v}) = $f(\mathbf{v})$ is a function such that maximizing it corresponds to maximizing the test power.

$$f(\mathbf{v}) = \frac{\text{witness}_{P,R}^{2}(\mathbf{v}) - \text{witness}_{Q,R}^{2}(\mathbf{v})}{\text{standard deviation}_{P,Q,R}^{2}(\mathbf{v})}$$

- $\mathbf{I}(\mathbf{v}) > 0 \implies Q$ is better in the region around \mathbf{v}
- $\blacksquare f(\mathbf{v}) < 0 \implies P$ is better in the region around \mathbf{v}

■ Power criterion(\mathbf{v}) = $f(\mathbf{v})$ is a function such that maximizing it corresponds to maximizing the test power.

$$f(\mathbf{v}) = \frac{\text{witness}_{P,R}^{2}(\mathbf{v}) - \text{witness}_{Q,R}^{2}(\mathbf{v})}{\text{standard deviation}_{P,Q,R}^{2}(\mathbf{v})}$$

- $f(\mathbf{v}) > 0 \implies Q$ is better in the region around \mathbf{v}
- $f(\mathbf{v}) < 0 \implies P$ is better in the region around \mathbf{v}

Power criterion(\mathbf{v}) = $f(\mathbf{v})$ is a function such that maximizing it corresponds to maximizing the test power.

$$f(\mathbf{v}) = \frac{\text{witness}_{P,R}^{2}(\mathbf{v}) - \text{witness}_{Q,R}^{2}(\mathbf{v})}{\text{standard deviation}_{P,Q,R}^{2}(\mathbf{v})}$$

- $f(\mathbf{v}) > 0 \implies Q$ is better in the region around \mathbf{v}
- $f(\mathbf{v}) < 0 \implies P$ is better in the region around \mathbf{v}

$$Q = LSGAN$$
 [Mao et al., 2017]

$$P = GAN$$

- Set V = 40 (real) images of digit i = 0, ..., 9.
- Evaluate power criterion with n = 2000.
- Q is better at "1" and "5". P is slightly better at "3". Interpretable.

$$Q = LSGAN$$
 [Mao et al., 2017]

$$P = GAN$$

- Set V = 40 (real) images of digit i = 0, ..., 9.
- Evaluate power criterion with n = 2000.
- Q is better at "1" and "5". P is slightly better at "3". Interpretable.

$$Q = LSGAN$$
 [Mao et al., 2017]

$$P = GAN$$

- Set V = 40 (real) images of digit i = 0, ..., 9.
- Evaluate power criterion with n = 2000.
- *Q* is better at "1" and "5". *P* is slightly better at "3". **Interpretable**.

$$Q = LSGAN$$
 [Mao et al., 2017]

$$P = GAN$$

- Set V = 40 (real) images of digit i = 0, ..., 9.
- Evaluate power criterion with n = 2000.
- *Q* is better at "1" and "5". *P* is slightly better at "3". **Interpretable**.

$$Q = LSGAN$$
 [Mao et al., 2017]

$$P = GAN$$

[Goodfellow et al., 2014]

- Set V = 40 (real) images of digit i = 0, ..., 9.
- Evaluate power criterion with n = 2000.
- Q is better at "1" and "5". P is slightly better at "3". Interpretable.

(Gaussian kernel on top of features from a CNN classifier.)

- P = {airplane, cat},Q = {automobile, cat}
- \blacksquare (true) $R = \{$ automobile, cat $\}$

Gaussian kernel on 2048 features extracted by the Inception-v3 network at the pool3 layer.

- P = {airplane, cat},Q = {automobile, cat}
- \blacksquare (true) $R = \{$ automobile, cat $\}$

Gaussian kernel on 2048 features extracted by the Inception-v3 network at the pool3 layer.

- P = {airplane, cat},
 Q = {automobile, cat}
- \blacksquare (true) $R = \{$ automobile, cat $\}$

Gaussian kernel on 2048 features extracted by the Inception-v3 network at the pool3 layer.

Histogram of power criterion values $f(\mathbf{v})$ evaluated at $\mathbf{v} = \{\text{airplane, automobile, cat}\}.$

■ All non-negative. \implies Q is equally good or better than P everywhere.

- P = {airplane, cat},Q = {automobile, cat}
- \blacksquare (true) $R = \{$ automobile, cat $\}$

■ Gaussian kernel on 2048 features extracted by the Inception-v3 network at the pool3 layer.

Images \mathbf{v} with the lowest values of $f(\mathbf{v}) \approx 0$. $\implies P, Q$ perform equally well in these regions.

- P = {airplane, cat},
 Q = {automobile, cat}
- \blacksquare (true) $R = \{$ automobile, cat $\}$

■ Gaussian kernel on 2048 features extracted by the Inception-v3 network at the pool3 layer.

Images **v** with the highest values of $f(\mathbf{v}) > 0$. $\implies Q$ is better than P in these regions.

- \mathbf{p} , \mathbf{q} : probability density functions up to the normalizer
- \blacksquare r: unknown data generating density (unknown).
- Observe $Z_n \stackrel{1.1.a.}{\sim} R$ and have explicit p, q.

 H_0 : p and q model r equally well H_1 : q models r better.

Formulate as

$$H_0: D(p,r) - D(q,r) = 0$$

 $H_1: D(p,r) - D(q,r) > 0$

for some distance D .

- Statistic: $\hat{S}_n = \widehat{D}(p,r) \widehat{D}(q,r)$. Large, positive $\implies Q$ is better.
- Same as before except p, q are now explicit density functions. No samples.

- \mathbf{p} , \mathbf{q} : probability density functions up to the normalizer
- \blacksquare r: unknown data generating density (unknown).
- Observe $Z_n \stackrel{i.i.d.}{\sim} R$ and have explicit p, q.

 H_0 : p and q model r equally well H_1 : q models r better.

Formulate as

$$H_0: D(p,r) - D(q,r) = 0$$

 $H_1: D(p,r) - D(q,r) > 0$

for some distance $oldsymbol{D}$.

- Statistic: $\hat{S}_n = \widehat{D}(p,r) \widehat{D}(q,r)$. Large, positive $\implies Q$ is better.
- Same as before except p, q are now explicit density functions. No samples.

- \blacksquare p, q: probability density functions up to the normalizer
- \blacksquare r: unknown data generating density (unknown).
- Observe $Z_n \stackrel{i.i.d.}{\sim} R$ and have explicit p, q.

 H_0 : p and q model r equally well H_1 : q models r better.

Formulate as

$$H_0: D(p,r) - D(q,r) = 0$$

 $H_1: D(p,r) - D(q,r) > 0$

for some distance $oldsymbol{D}$.

- Statistic: $\hat{S}_n = \hat{D}(\mathbf{p}, r) \hat{D}(\mathbf{q}, r)$. Large, positive $\implies Q$ is better.
- Same as before except p, q are now explicit density functions. No samples.

- \mathbf{p} , \mathbf{q} : probability density functions up to the normalizer
- \blacksquare r: unknown data generating density (unknown).
- Observe $Z_n \stackrel{i.i.d.}{\sim} R$ and have explicit p, q.

 H_0 : p and q model r equally well H_1 : q models r better.

Formulate as

$$H_0: D(p,r) - D(q,r) = 0$$

 $H_1: D(p,r) - D(q,r) > 0,$

for some distance D.

- Statistic: $\hat{S}_n = \hat{D}(\mathbf{p}, r) \hat{D}(\mathbf{q}, r)$. Large, positive $\implies Q$ is better.
- Same as before except p, q are now explicit density functions. No samples.

- \mathbf{p} , \mathbf{q} : probability density functions up to the normalizer
- \blacksquare r: unknown data generating density (unknown).
- Observe $Z_n \stackrel{i.i.d.}{\sim} R$ and have explicit p, q.

 H_0 : p and q model r equally well H_1 : q models r better.

Formulate as

$$H_0: D(\mathbf{p}, r) - D(\mathbf{q}, r) = 0$$

 $H_1: D(\mathbf{p}, r) - D(\mathbf{q}, r) > 0$

for some distance D.

- Statistic: $\hat{S}_n = \widehat{D}(p, r) \widehat{D}(q, r)$. Large, positive $\implies Q$ is better.
- Same as before except p, q are now explicit density functions. No samples.

The Finite Set Stein Discrepancy (FSSD) (NeurIPS 2017 Best Paper)

Recall witness(\mathbf{v}) = $\mathbb{E}_{\mathbf{z} \sim r}[k_{\mathbf{v}}(\mathbf{z})] - \mathbb{E}_{\mathbf{x} \sim p}[k_{\mathbf{v}}(\mathbf{x})]$

Problem: No sample from p. Cannot estimate $\mathbb{E}_{\mathbf{x} \sim p}[k_{\mathbf{v}}(\mathbf{x})]$ easily.

The Finite Set Stein Discrepancy (FSSD) (NeurIPS 2017 Best Paper)

Recall witness(
$$\mathbf{v}$$
) = $\mathbb{E}_{\mathbf{z} \sim r}[k_{\mathbf{v}}(\mathbf{z})] - \mathbb{E}_{\mathbf{x} \sim p}[k_{\mathbf{v}}(\mathbf{x})]$

Problem: No sample from p. Cannot estimate $\mathbb{E}_{\mathbf{x} \sim p}[k_{\mathbf{v}}(\mathbf{x})]$ easily.

$$(\text{Stein}) \text{ witness}(\mathbf{v}) = \mathbb{E}_{\mathbf{z} \sim r}[T_p k_{\mathbf{v}}(\mathbf{z})] - \mathbb{E}_{\mathbf{x} \sim p}[T_p k_{\mathbf{v}}(\mathbf{x})]$$

The Finite Set Stein Discrepancy (FSSD) (NeurIPS 2017 Best Paper)

Recall witness(
$$\mathbf{v}$$
) = $\mathbb{E}_{\mathbf{z} \sim r}[k_{\mathbf{v}}(\mathbf{z})] - \mathbb{E}_{\mathbf{x} \sim p}[k_{\mathbf{v}}(\mathbf{x})]$

Problem: No sample from p. Cannot estimate $\mathbb{E}_{\mathbf{x} \sim p}[k_{\mathbf{v}}(\mathbf{x})]$ easily.

$$(\mathrm{Stein}) \ \mathrm{witness}(\mathbf{v}) = \mathbb{E}_{\mathbf{z} \sim r}[T_p \ \boxed{\hspace{1cm}} - \mathbb{E}_{\mathbf{x} \sim p}[T_p \ \boxed{\hspace{1cm}}$$

$$\text{Recall witness}(\mathbf{v}) = \mathbb{E}_{\mathbf{z} \sim r}[k_{\mathbf{v}}(\mathbf{z})] - \mathbb{E}_{\mathbf{x} \sim p}[k_{\mathbf{v}}(\mathbf{x})]$$

Problem: No sample from p. Cannot estimate $\mathbb{E}_{\mathbf{x} \sim p}[k_{\mathbf{v}}(\mathbf{x})]$ easily.

$$(\text{Stein}) \text{ witness}(\mathbf{v}) = \mathbb{E}_{\mathbf{z} \sim r}[\qquad \qquad] - \mathbb{E}_{\mathbf{x} \sim p}[$$

Recall witness(
$$\mathbf{v}$$
) = $\mathbb{E}_{\mathbf{z} \sim r}[k_{\mathbf{v}}(\mathbf{z})] - \mathbb{E}_{\mathbf{x} \sim p}[k_{\mathbf{v}}(\mathbf{x})]$

Problem: No sample from p. Cannot estimate $\mathbb{E}_{\mathbf{x} \sim p}[k_{\mathbf{v}}(\mathbf{x})]$ easily.

(Stein) witness(
$$\mathbf{v}$$
) = $\mathbb{E}_{\mathbf{z} \sim r}$ [$-\mathbb{E}_{\mathbf{x} \sim p}$ [

Idea: Define T_p such that $\mathbb{E}_{\mathbf{x} \sim p}(T_p \mathbf{k}_{\mathbf{v}})(\mathbf{x}) = 0$, for any \mathbf{v} .

$$\text{Recall witness}(\mathbf{v}) = \mathbb{E}_{\mathbf{z} \sim r}[k_{\mathbf{v}}(\mathbf{z})] - \mathbb{E}_{\mathbf{x} \sim p}[k_{\mathbf{v}}(\mathbf{x})]$$

Problem: No sample from p. Cannot estimate $\mathbb{E}_{\mathbf{x} \sim p}[k_{\mathbf{v}}(\mathbf{x})]$ easily.

(Stein) witness(
$$\mathbf{v}$$
) = $\mathbb{E}_{\mathbf{z} \sim r}$ [

Idea: Define T_p such that $\mathbb{E}_{\mathbf{x} \sim p}(T_p k_{\mathbf{v}})(\mathbf{x}) = 0$, for any \mathbf{v} .

Recall witness(
$$\mathbf{v}$$
) = $\mathbb{E}_{\mathbf{z} \sim r}[k_{\mathbf{v}}(\mathbf{z})] - \mathbb{E}_{\mathbf{x} \sim p}[k_{\mathbf{v}}(\mathbf{x})]$

Problem: No sample from p. Cannot estimate $\mathbb{E}_{\mathbf{x} \sim p}[k_{\mathbf{v}}(\mathbf{x})]$ easily.

(Stein) witness(
$$\mathbf{v}$$
) = $\mathbb{E}_{\mathbf{z} \sim r}[$ $T_p k_{\mathbf{v}}(\mathbf{z})$]

Idea: Define T_p such that $\mathbb{E}_{\mathbf{x} \sim p}(T_p k_{\mathbf{v}})(\mathbf{x}) = 0$, for any \mathbf{v} .

Recall witness(
$$\mathbf{v}$$
) = $\mathbb{E}_{\mathbf{z} \sim r}[k_{\mathbf{v}}(\mathbf{z})] - \mathbb{E}_{\mathbf{x} \sim p}[k_{\mathbf{v}}(\mathbf{x})]$

Problem: No sample from p. Cannot estimate $\mathbb{E}_{\mathbf{x} \sim p}[k_{\mathbf{v}}(\mathbf{x})]$ easily.

(Stein) witness(
$$\mathbf{v}$$
) = $\mathbb{E}_{\mathbf{z} \sim r}[$ $T_p k_{\mathbf{v}}(\mathbf{z})$]

Idea: Define T_p such that $\mathbb{E}_{\mathbf{x} \sim p}(T_p k_{\mathbf{v}})(\mathbf{x}) = 0$, for any \mathbf{v} .

■ UME defined with this new Stein witness function is called the Finite-Set Stein Discrepancy (Jitkrittum et al., 2017).

Recall witness(
$$\mathbf{v}$$
) = $\mathbb{E}_{\mathbf{z} \sim r}[k_{\mathbf{v}}(\mathbf{z})] - \mathbb{E}_{\mathbf{x} \sim p}[k_{\mathbf{v}}(\mathbf{x})]$

Problem: No sample from p. Cannot estimate $\mathbb{E}_{\mathbf{x} \sim p}[k_{\mathbf{v}}(\mathbf{x})]$ easily.

(Stein) witness(
$$\mathbf{v}$$
) = $\mathbb{E}_{\mathbf{z} \sim r}[$ $T_p k_{\mathbf{v}}(\mathbf{z})$]

Idea: Define T_p such that $\mathbb{E}_{\mathbf{x} \sim p}(T_p k_{\mathbf{v}})(\mathbf{x}) = 0$, for any \mathbf{v} .

- UME defined with this new Stein witness function is called the Finite-Set Stein Discrepancy (Jitkrittum et al., 2017).
- \blacksquare T_p is called a **Stein operator**.

$$(T_{\mathbf{p}}k_{\mathbf{v}})(\mathbf{z}) = \frac{1}{\mathbf{p}(\mathbf{z})}\frac{d}{d\mathbf{z}}[k_{\mathbf{v}}(\mathbf{z})\mathbf{p}(\mathbf{z})],$$

which is independent of the normalizer of p.

Recall witness(
$$\mathbf{v}$$
) = $\mathbb{E}_{\mathbf{z} \sim r}[k_{\mathbf{v}}(\mathbf{z})] - \mathbb{E}_{\mathbf{x} \sim p}[k_{\mathbf{v}}(\mathbf{x})]$

Problem: No sample from p. Cannot estimate $\mathbb{E}_{\mathbf{x} \sim p}[k_{\mathbf{v}}(\mathbf{x})]$ easily.

(Stein) witness(
$$\mathbf{v}$$
) = $\mathbb{E}_{\mathbf{z} \sim r}[$ $T_p k_{\mathbf{v}}(\mathbf{z})$]

Idea: Define T_p such that $\mathbb{E}_{\mathbf{x} \sim p}(T_p k_{\mathbf{v}})(\mathbf{x}) = 0$, for any \mathbf{v} .

- UME defined with this new Stein witness function is called the Finite-Set Stein Discrepancy (Jitkrittum et al., 2017).
- \blacksquare T_p is called a **Stein operator**.

$$(T_{\mathbf{p}}k_{\mathbf{v}})(\mathbf{z}) = \frac{1}{\mathbf{p}(\mathbf{z})}\frac{d}{d\mathbf{z}}[k_{\mathbf{v}}(\mathbf{z})\mathbf{p}(\mathbf{z})],$$

which is independent of the normalizer of p.

■ Can construct Rel-FSSD test similarly: optimize V to show where Q is better, asymptotic normality, etc.

FSSD is a Proper Discrepancy Measure

■ FSSD² $(p, r) = \frac{1}{dJ} \sum_{j=1}^{J} \|\mathbf{g}_{p,r}(\mathbf{v}_j)\|_2^2$ where $\mathbf{g}_{p,r}(\mathbf{v}) = \mathbb{E}_{\mathbf{z} \sim r} \left[\frac{1}{p(\mathbf{z})} \frac{d}{d\mathbf{z}} [k_{\mathbf{v}}(\mathbf{z}) p(\mathbf{z})] \right]$ (Stein witness).

Theorem (FSSD is a discrepancy measure (Jitkrittum et al., 2017))

- 1 (Nice kernel) Kernel k is C_0 -universal, and real analytic e.g. Gaussian kernel.
- 2 (Vanishing boundary) $\lim_{\|\mathbf{x}\| o \infty} p(\mathbf{x}) k_{\mathbf{v}}(\mathbf{x}) = \mathbf{0}$.
- 3 (Avoid "blind spots") Locations $\mathbf{v}_1,\dots,\mathbf{v}_J\sim\eta$ which has a density

Then, for any $J \geq 1$, η -almost surely,

$$FSSD^2 = 0 \iff p = r.$$

Summary: Evaluating the witness at random locations is sufficient to detect the discrepancy between p, r.

FSSD is a Proper Discrepancy Measure

■ FSSD² $(p, r) = \frac{1}{dJ} \sum_{j=1}^{J} \|\mathbf{g}_{p,r}(\mathbf{v}_j)\|_2^2$ where $\mathbf{g}_{p,r}(\mathbf{v}) = \mathbb{E}_{\mathbf{z} \sim r} \left[\frac{1}{p(\mathbf{z})} \frac{d}{d\mathbf{z}} [k_{\mathbf{v}}(\mathbf{z}) p(\mathbf{z})] \right]$ (Stein witness).

Theorem (FSSD is a discrepancy measure (Jitkrittum et al., 2017))

Main conditions:

- 1 (Nice kernel) Kernel k is C_0 -universal, and real analytic e.g., Gaussian kernel.
- 2 (Vanishing boundary) $\lim_{\|\mathbf{x}\|\to\infty} p(\mathbf{x}) k_{\mathbf{v}}(\mathbf{x}) = \mathbf{0}$.
- 3 (Avoid "blind spots") Locations $\mathbf{v}_1,\ldots,\mathbf{v}_J\sim\eta$ which has a density.

Then, for any $J \geq 1$, η -almost surely,

$$FSSD^2 = 0 \iff \mathbf{p} = \mathbf{r}.$$

Summary: Evaluating the witness at random locations is sufficient to detect the discrepancy between p, r.

Relative FSSD Witness Function

- Unlike UME which cares about probability mass, FSSD cares about shape of density functions.
- In FSSD, p, q are represented by $\nabla_{\mathbf{x}} \log p(\mathbf{x})$ and $\nabla_{\mathbf{y}} \log q(\mathbf{y})$ (instead of samples).

Relative FSSD Witness Function

- Unlike UME which cares about probability mass, FSSD cares about shape of density functions.
- In FSSD, p, q are represented by $\nabla_{\mathbf{x}} \log p(\mathbf{x})$ and $\nabla_{\mathbf{y}} \log q(\mathbf{y})$ (instead of samples).

Summary

Propose a model comparison test Relative UME:

- **Statistical testing**: account for randomness of the distance
- **Linear-time**: runtime complexity = O(n)
- **Interpretable**: tells where Q is better P (vice versa)

Another variant Relative FSSD : P, Q are explicit (unnormalized) density functions. No need to sample.

Main reference:

■ Informative Features for Model Comparison

W. Jitkrittum, H. Kanagawa, P. Sangkloy, J. Hays, B. Schölkopf, A. Gretton NeurIPS 2018

Python code: https://github.com/wittawatj/kernel-mod

Extension: relative test for comparing latent-variable models.

A Kernel Stein Test for Comparing Latent Variable Models H. Kanagawa, W. Jitkrittum, L. Mackey, K. Fukumizu, A. Gretton https://arxiv.org/abs/1907.00586

Summary

Propose a model comparison test Relative UME:

- **Statistical testing**: account for randomness of the distance
- **Linear-time**: runtime complexity = O(n)
- **Interpretable**: tells where Q is better P (vice versa)

Another variant Relative FSSD : P, Q are explicit (unnormalized) density functions. No need to sample.

Main reference:

 Informative Features for Model Comparison
 W. Jitkrittum, H. Kanagawa, P. Sangkloy, J. Hays, B. Schölkopf, A. Gretton NeurIPS 2018

Python code: https://github.com/wittawatj/kernel-mod

Extension: relative test for comparing latent-variable models.

A Kernel Stein Test for Comparing Latent Variable Models H. Kanagawa, W. Jitkrittum, L. Mackey, K. Fukumizu, A. Gretton https://arxiv.org/abs/1907.00586

Questions?

Thank you

Real smiling faces (RS)

Real non-smiling faces (NS)

- Two datasets for training two models.
- Center-cropped CelebA images to 64×64 pixels.

■ Trained with DCGAN. Get two models.

- \blacksquare Report avg rejection rate (e.g., rate of claiming Q is better).
- Fréchet Inception Distance (FID) (Heusel et al., 2017). Not a test. If FID(P, R) > FID(Q, R), claim Q is better.
- \blacksquare **RS** = real smiling images. **RN** = real non-smiling images.
- RM = mixture of RS and RN

- FID claims *Q* is better when the two models are equally good. Not account for uncertainty.
- \blacksquare All have high test power when Q is indeed better

- \blacksquare Report avg rejection rate (e.g., rate of claiming Q is better).
- Fréchet Inception Distance (FID) (Heusel et al., 2017). Not a test. If FID(P, R) > FID(Q, R), claim Q is better.
- \blacksquare **RS** = real smiling images. **RN** = real non-smiling images.
- RM = mixture of RS and RN

- FID claims *Q* is better when the two models are equally good. Not account for uncertainty.
- \blacksquare All have high test power when Q is indeed better

- \blacksquare Report avg rejection rate (e.g., rate of claiming Q is better).
- Fréchet Inception Distance (FID) (Heusel et al., 2017). Not a test. If FID(P, R) > FID(Q, R), claim Q is better.
- \blacksquare **RS** = real smiling images. **RN** = real non-smiling images.
- RM = mixture of RS and RN

Case	P	Q	R	Truth	Rel-UME		Rel-	FID	FID diff.
					J10	J40	MMI)	
1.	S	S	RS	Not rej	0.0	0.0	0.0	0.53	-0.045 ± 0.52

- FID claims *Q* is better when the two models are equally good. Not account for uncertainty.
- All have high test power when Q is indeed better

- Report avg rejection rate (e.g., rate of claiming Q is better).
- Fréchet Inception Distance (FID) (Heusel et al., 2017). Not a test. If FID(P, R) > FID(Q, R), claim Q is better.
- \blacksquare **RS** = real smiling images. **RN** = real non-smiling images.
- RM = mixture of RS and RN

Case	P	Q	R	Truth	Rel-UME		Rel-	FID	FID diff.
					J10	J40	MMI)	
1.	S	S	RS	Not rej	0.0	0.0	0.0	0.53	-0.045 ± 0.52
2.	RS	RS	RS	Not rej	0.0	0.0	0.03	0.7	0.04 ± 0.19

- FID claims *Q* is better when the two models are equally good. Not account for uncertainty.
- All have high test power when *Q* is indeed better

- \blacksquare Report avg rejection rate (e.g., rate of claiming Q is better).
- Fréchet Inception Distance (FID) (Heusel et al., 2017). Not a test. If FID(P, R) > FID(Q, R), claim Q is better.
- \blacksquare **RS** = real smiling images. **RN** = real non-smiling images.
- RM = mixture of RS and RN

Case	P	Q	R	Truth	Rel-UME		Rel-	FID	FID diff.
					J10	J40	MMI)	
1.	S	S	RS	Not rej	0.0	0.0	0.0	0.53	-0.045 ± 0.52
2.	RS	RS	RS	Not rej	0.0	0.0	0.03	0.7	0.04 ± 0.19
3.	S	N	RN	Rej	0.57	1.0	1.0	1.0	5.25 ± 0.75
4.	S	N	RM	Not rej	0.0	0.0	0.0	0.0	-4.55 ± 0.82

- FID claims *Q* is better when the two models are equally good. Not account for uncertainty.
- All have high test power when *Q* is indeed better.

Experiment: 2d Blobs

- Problem in \mathbb{R}^2 . Difference in small scale relative to the global structure.
- **q** is closer to r. So, H_1 is true.

Experiment: 2d Blobs

- Problem in \mathbb{R}^2 . Difference in small scale relative to the global structure.
- \blacksquare *q* is closer to *r*. So, H_1 is true.

Rel-FSSD J1

 Rel-MMD (Bounliphone et al., 2014) suffers from a wrong choice of Gaussian bandwidth.

Rel-FSSD J5

 Proposed Rel-UME, Rel-FSSD can optimize their parameters (maximizing test power).

Rel-MMD

Experiment: 2d Blobs

- Problem in \mathbb{R}^2 . Difference in small scale relative to the global structure.
- \blacksquare *q* is closer to *r*. So, H_1 is true.

Rel-FSSD J1

 Rel-MMD (Bounliphone et al., 2014) suffers from a wrong choice of Gaussian bandwidth.

Rel-FSSD J5

 Proposed Rel-UME, Rel-FSSD can optimize their parameters (maximizing test power).

Rel-MMD

 $V := \{\mathbf{v}_1, \dots, \mathbf{v}_J\} = J \text{ test locations}$

$$\begin{aligned} \text{UME}_{V}^{2}(\mathbf{P}, \mathbf{R}) &= \frac{1}{J} \sum_{j=1}^{J} (\mu_{\mathbf{P}}(\mathbf{v}_{j}) - \mu_{\mathbf{R}}(\mathbf{v}_{j}))^{2} \\ &= \frac{1}{J} \left\| \begin{pmatrix} \mu_{\mathbf{P}}(\mathbf{v}_{1}) \\ \vdots \\ \mu_{\mathbf{P}}(\mathbf{v}_{I}) \end{pmatrix} - \begin{pmatrix} \mu_{\mathbf{R}}(\mathbf{v}_{1}) \\ \vdots \\ \mu_{\mathbf{R}}(\mathbf{v}_{I}) \end{pmatrix} \right\|_{2}^{2} \end{aligned}$$

 $V := \{\mathbf{v}_1, \dots, \mathbf{v}_I\} = J \text{ test locations}$

$$\begin{aligned} &= \{\mathbf{v}_1, \dots, \mathbf{v}_J\} = J \text{ test locations} \\ &= UME_V^2(\mathbf{P}, R) = \frac{1}{J} \sum_{j=1}^J (\mu_{\mathbf{P}}(\mathbf{v}_j) - \mu_{R}(\mathbf{v}_j))^2 \\ &= \frac{1}{J} \left\| \begin{pmatrix} \mu_{P}(\mathbf{v}_1) \\ \vdots \\ \mu_{P}(\mathbf{v}_J) \end{pmatrix} - \begin{pmatrix} \mu_{R}(\mathbf{v}_1) \\ \vdots \\ \mu_{R}(\mathbf{v}_J) \end{pmatrix} \right\|_2^2 \\ &= \frac{1}{J} \left\| \mathbb{E}_{\mathbf{x} \sim P} \begin{pmatrix} k(\mathbf{x}, \mathbf{v}_1) \\ \vdots \\ k(\mathbf{x}, \mathbf{v}_2) \end{pmatrix} - \mathbb{E}_{\mathbf{z} \sim R} \begin{pmatrix} k(\mathbf{z}, \mathbf{v}_1) \\ \vdots \\ k(\mathbf{z}, \mathbf{v}_2) \end{pmatrix} \right\|_2^2 \end{aligned}$$

 $V := \{\mathbf{v}_1, \dots, \mathbf{v}_J\} = J$ test locations

$$\begin{aligned} \text{UME}_{V}^{2}(\mathbf{P}, R) &= \frac{1}{J} \sum_{j=1}^{J} (\mu_{P}(\mathbf{v}_{j}) - \mu_{R}(\mathbf{v}_{j}))^{2} \\ &= \frac{1}{J} \left\| \begin{pmatrix} \mu_{P}(\mathbf{v}_{1}) \\ \vdots \\ \mu_{P}(\mathbf{v}_{J}) \end{pmatrix} - \begin{pmatrix} \mu_{R}(\mathbf{v}_{1}) \\ \vdots \\ \mu_{R}(\mathbf{v}_{J}) \end{pmatrix} \right\|_{2}^{2} \\ &= \frac{1}{J} \left\| \mathbb{E}_{\mathbf{x} \sim P} \begin{pmatrix} k(\mathbf{x}, \mathbf{v}_{1}) \\ \vdots \\ k(\mathbf{x}, \mathbf{v}_{J}) \end{pmatrix} - \mathbb{E}_{\mathbf{z} \sim R} \begin{pmatrix} k(\mathbf{z}, \mathbf{v}_{1}) \\ \vdots \\ k(\mathbf{z}, \mathbf{v}_{J}) \end{pmatrix} \right\|_{2}^{2} \end{aligned}$$

Let
$$\psi_V(\mathbf{x}) := \frac{1}{\sqrt{J}} \left(k(\mathbf{x}, \mathbf{v}_1), \dots, k(\mathbf{x}, \mathbf{v}_J) \right)^{\top} \in \mathbb{R}^J$$
. Equivalently,

$$\mathrm{UME}_{V}^{2}(\boldsymbol{P},R) = \left\| \mathbb{E}_{\mathbf{x} \sim \boldsymbol{P}}[\psi_{V}(\mathbf{x})] - \mathbb{E}_{\mathbf{z} \sim R}[\psi_{V}(\mathbf{z})] \right\|_{2}^{2}.$$

 $V := \{\mathbf{v}_1, \dots, \mathbf{v}_J\} = J \text{ test locations}$

$$\begin{aligned} \mathsf{UME}_{V}^{2}(\mathbf{P}, \mathbf{R}) &= \frac{1}{J} \sum_{j=1}^{J} (\mu_{P}(\mathbf{v}_{j}) - \mu_{R}(\mathbf{v}_{j}))^{2} \\ &= \frac{1}{J} \left\| \begin{pmatrix} \mu_{P}(\mathbf{v}_{1}) \\ \vdots \\ \mu_{P}(\mathbf{v}_{J}) \end{pmatrix} - \begin{pmatrix} \mu_{R}(\mathbf{v}_{1}) \\ \vdots \\ \mu_{R}(\mathbf{v}_{J}) \end{pmatrix} \right\|_{2}^{2} \\ &= \frac{1}{J} \left\| \mathbb{E}_{\mathbf{x} \sim P} \begin{pmatrix} k(\mathbf{x}, \mathbf{v}_{1}) \\ \vdots \\ k(\mathbf{x}, \mathbf{v}_{J}) \end{pmatrix} - \mathbb{E}_{\mathbf{z} \sim R} \begin{pmatrix} k(\mathbf{z}, \mathbf{v}_{1}) \\ \vdots \\ k(\mathbf{z}, \mathbf{v}_{J}) \end{pmatrix} \right\|_{2}^{2} \end{aligned}$$

Let
$$\psi_V(\mathbf{x}) := \frac{1}{\sqrt{J}} \left(k(\mathbf{x}, \mathbf{v}_1), \dots, k(\mathbf{x}, \mathbf{v}_J) \right)^{\top} \in \mathbb{R}^J$$
. Equivalently,

$$\mathrm{UME}_{V}^{2}(\mathbf{P},R) = \left\| \mathbb{E}_{\mathbf{x} \sim \mathbf{P}}[\psi_{V}(\mathbf{x})] - \mathbb{E}_{\mathbf{z} \sim R}[\psi_{V}(\mathbf{z})] \right\|_{2}^{2}.$$

■ Empirical UME²(P, R) = replace \mathbb{E} 's above with $\frac{1}{n} \sum_{i=1}^{n}$.

- Write $U_P^2 = \text{UME}^2(P, R)$ and $U_Q^2 = \text{UME}^2(Q, R)$.
- Let $S := U_P^2 U_Q^2$. So $H_0 : S = 0$ and $H_1 : S > 0$.
- Let $C_V^S := \operatorname{cov}_{\mathbf{y} \sim S}[\psi_V(\mathbf{y})]$ where $S \in \{P, Q, R\}$.

$$lacksquare \operatorname{Let} oldsymbol{M} := \left(egin{array}{cc} oldsymbol{\psi}_V^P - oldsymbol{\psi}_V^R & oldsymbol{0} \ oldsymbol{0} & oldsymbol{\psi}_W^Q - oldsymbol{\psi}_W^R \end{array}
ight).$$

$$\blacksquare \ \operatorname{Let} \left(\begin{array}{cc} \zeta_P^2 & \zeta_{PQ} \\ \zeta_{PQ} & \zeta_O^2 \end{array} \right) := \boldsymbol{M}^\top \left(\begin{array}{cc} C_V^P + C_V^R & C_V^R \\ (C_V^R)^\top & C_W^Q + C_W^R \end{array} \right) \boldsymbol{M}$$

Proposition (Joint distribution of $\widehat{U_P^2}$ and $\widehat{U_O^2}$)

Assume that P, Q and R are all distinct. Under mild conditions,

$$\begin{array}{c} \mathbf{1} \hspace{0.1cm} \sqrt{n} \left(\left(\begin{array}{c} \widehat{U_P^2} \\ \widehat{U_Q^2} \end{array} \right) - \left(\begin{array}{c} U_P^2 \\ U_Q^2 \end{array} \right) \right) \overset{d}{\to} \mathcal{N} \left(\mathbf{0}, 4 \left(\begin{array}{c} \zeta_P^2 & \zeta_{PQ} \\ \zeta_{PQ} & \zeta_Q^2 \end{array} \right) \right); \end{array}$$

2
$$\sqrt{n}\left(\widehat{S}_n-S
ight)\stackrel{a}{ o} \mathcal{N}\left(0,4(\zeta_P^2-2\zeta_{PQ}+\zeta_Q^2)
ight)$$
 .

So, asymptotic null distribution is normal. Easy to get T_{α} .

■ Write
$$U_P^2 = \text{UME}^2(P, R)$$
 and $U_Q^2 = \text{UME}^2(Q, R)$.

■ Let
$$S := U_P^2 - U_O^2$$
. So $H_0 : S = 0$ and $H_1 : S > 0$.

■ Let
$$C_V^S := \operatorname{cov}_{\mathbf{y} \sim S}[\psi_V(\mathbf{y})]$$
 where $S \in \{P, Q, R\}$.

$$lackbox{$$

$$\blacksquare \ \operatorname{Let} \left(\begin{array}{cc} \zeta_P^2 & \zeta_{PQ} \\ \zeta_{PQ} & \zeta_Q^2 \end{array} \right) := \boldsymbol{M}^\top \left(\begin{array}{cc} C_V^P + C_V^R & C_V^R \\ (C_V^R)^\top & C_W^Q + C_W^R \end{array} \right) \boldsymbol{M}$$

Proposition (Joint distribution of $\widehat{U_P^2}$ and $\widehat{U_Q^2}$

Assume that P, Q and R are all distinct. Under mild conditions,

2
$$\sqrt{n}\left(\widehat{S}_n-S
ight)\stackrel{d}{ o} \mathcal{N}\left(0,4(\zeta_P^2-2\zeta_{PQ}+\zeta_Q^2)
ight).$$

So, asymptotic null distribution is normal. Easy to get T_{lpha} .

■ Write
$$U_P^2 = \text{UME}^2(P, R)$$
 and $U_Q^2 = \text{UME}^2(Q, R)$.

■ Let
$$S := U_P^2 - U_O^2$$
. So $H_0 : S = 0$ and $H_1 : S > 0$.

■ Let
$$C_V^S := \operatorname{cov}_{\mathbf{y} \sim S}[\psi_V(\mathbf{y})]$$
 where $S \in \{P, Q, R\}$.

$$lackbox{$$

$$\blacksquare \ \operatorname{Let} \left(\begin{array}{cc} \zeta_P^2 & \zeta_{PQ} \\ \zeta_{PQ} & \zeta_Q^2 \end{array} \right) := \boldsymbol{M}^\top \left(\begin{array}{cc} C_V^P + C_V^R & C_V^R \\ (C_V^R)^\top & C_W^Q + C_W^R \end{array} \right) \boldsymbol{M}$$

Proposition (Joint distribution of $\widehat{U_P^2}$ and $\widehat{U_O^2}$)

Assume that P, Q and R are all distinct. Under mild conditions,

$$\boxed{1} \hspace{0.1cm} \sqrt{n} \left(\left(\begin{array}{c} \widehat{U_P^2} \\ \widehat{U_Q^2} \end{array} \right) - \left(\begin{array}{c} U_P^2 \\ U_Q^2 \end{array} \right) \right) \stackrel{d}{\to} \mathcal{N} \left(\textbf{0}, 4 \left(\begin{array}{cc} \zeta_P^2 & \zeta_{PQ} \\ \zeta_{PQ} & \zeta_Q^2 \end{array} \right) \right);$$

2
$$\sqrt{n}\left(\widehat{S}_n-S
ight)\stackrel{d}{ o} \mathcal{N}\left(0,4(\zeta_P^2-2\zeta_{PQ}+\zeta_Q^2)
ight).$$

So, asymptotic null distribution is normal. Easy to get T_{lpha} .

- Write $U_P^2 = \text{UME}^2(P, R)$ and $U_O^2 = \text{UME}^2(Q, R)$.
- Let $S := U_P^2 U_Q^2$. So $H_0 : S = 0$ and $H_1 : S > 0$.
- Let $C_V^S := \text{cov}_{\mathbf{y} \sim S}[\psi_V(\mathbf{y})]$ where $S \in \{P, Q, R\}$.

$$lackbox{$$

$$\blacksquare \ \operatorname{Let} \left(\begin{array}{cc} \zeta_P^2 & \zeta_{PQ} \\ \zeta_{PQ} & \zeta_Q^2 \end{array} \right) := \boldsymbol{M}^\top \left(\begin{array}{cc} C_V^P + C_V^R & C_V^R \\ (C_V^R)^\top & C_W^Q + C_W^R \end{array} \right) \boldsymbol{M}$$

Proposition (Joint distribution of $\widehat{U_P^2}$ and $\widehat{U_Q^2}$)

Assume that P, Q and R are all distinct. Under mild conditions,

$$\begin{array}{c} \text{ 1 } \ \sqrt{n} \left(\left(\begin{array}{c} \widehat{U_P^2} \\ \widehat{U_Q^2} \end{array} \right) - \left(\begin{array}{c} U_P^2 \\ U_Q^2 \end{array} \right) \right) \stackrel{d}{\to} \mathcal{N} \left(\textbf{0}, 4 \left(\begin{array}{cc} \zeta_P^2 & \zeta_{PQ} \\ \zeta_{PQ} & \zeta_Q^2 \end{array} \right) \right); \end{aligned}$$

2
$$\sqrt{n}\left(\widehat{S}_n-S
ight)\stackrel{d}{ o} \mathcal{N}\left(0,4(\zeta_P^2-2\zeta_{PQ}+\zeta_Q^2)
ight).$$

So, asymptotic null distribution is normal. Easy to get T_{α} .

Experiment: Mean Shift

- Model 1: $p = \mathcal{N}([0.5, 0, ..., 0], \mathbf{I})$. Model 2: $q = \mathcal{N}([1, 0, ... 0], \mathbf{I})$
- Data distribution $r = \mathcal{N}(\mathbf{0}, \mathbf{I})$. Defined on \mathbb{R}^{50} .
- Set $\alpha = 0.05$. Should not reject H_0 .

Experiment: Mean Shift

- Model 1: $p = \mathcal{N}([0.5, 0, ..., 0], \mathbf{I})$. Model 2: $q = \mathcal{N}([1, 0, ... 0], \mathbf{I})$
- Data distribution $r = \mathcal{N}(\mathbf{0}, \mathbf{I})$. Defined on \mathbb{R}^{50} .
- Set $\alpha = 0.05$. Should not reject H_0 .

Experiment: Mean Shift

- Model 1: $p = \mathcal{N}([0.5, 0, ..., 0], \mathbf{I})$. Model 2: $q = \mathcal{N}([1, 0, ... 0], \mathbf{I})$
- Data distribution $r = \mathcal{N}(\mathbf{0}, \mathbf{I})$. Defined on \mathbb{R}^{50} .
- Set $\alpha = 0.05$. Should not reject H_0 .

- MMD runs in $O(n^2)$ time.
- Proposed Rel-UME and Rel-FSSD run in O(n).

- **p**, q, r are all RBM models. d = 20 dimensions. n = 2000.
- $g_{\mathbf{B},\mathbf{b},\mathbf{c}}(\mathbf{x}) := \frac{1}{Z} \sum_{\mathbf{h}} \exp\left(\mathbf{x}^{\top}\mathbf{B}\mathbf{h} + \mathbf{b}^{\top}\mathbf{x} + \mathbf{c}^{\top}\mathbf{h} \frac{1}{2}\|\mathbf{x}\|^{2}\right)$ where $\mathbf{h} \in \{-1,1\}^{5}$.
- Define $r(\mathbf{x}) := g_{\mathbf{B},\mathbf{b},\mathbf{c}}(\mathbf{x})$ for some randomly drawn $\mathbf{B},\mathbf{b},\mathbf{c}$.
- Let $p(\mathbf{x}) := g_{\mathbf{B}^p, \mathbf{b}, \mathbf{c}}(\mathbf{x})$, and $q(\mathbf{x}) := g_{\mathbf{B}^q, \mathbf{b}, \mathbf{c}}(\mathbf{x})$.
- **B** $\mathbf{B}^p = \mathbf{B}$ but with ϵ added to its first entry $B_{1,1}$
- **B** $\mathbf{B}^q = \mathbf{B}$ but with 0.3 added to its first entry $B_{1,1}$
- If $\epsilon > 0.3$, q is better. Should reject H_0 .

- **p**, q, r are all RBM models. d = 20 dimensions. n = 2000.
- $g_{\mathbf{B},\mathbf{b},\mathbf{c}}(\mathbf{x}) := \frac{1}{Z} \sum_{\mathbf{h}} \exp\left(\mathbf{x}^{\top}\mathbf{B}\mathbf{h} + \mathbf{b}^{\top}\mathbf{x} + \mathbf{c}^{\top}\mathbf{h} \frac{1}{2}\|\mathbf{x}\|^{2}\right)$ where $\mathbf{h} \in \{-1, 1\}^{5}$.
- Define $r(\mathbf{x}) := g_{\mathbf{B},\mathbf{b},\mathbf{c}}(\mathbf{x})$ for some randomly drawn $\mathbf{B},\mathbf{b},\mathbf{c}$.
- Let $p(\mathbf{x}) := g_{\mathbf{B}^p, \mathbf{b}, \mathbf{c}}(\mathbf{x})$, and $q(\mathbf{x}) := g_{\mathbf{B}^q, \mathbf{b}, \mathbf{c}}(\mathbf{x})$.
- **B** $^p = \mathbf{B}$ but with ϵ added to its first entry $B_{1,1}$
- **B** $\mathbf{B}^q = \mathbf{B}$ but with 0.3 added to its first entry $B_{1,1}$
- If $\epsilon > 0.3$, q is better. Should reject H_0 .

- **p**, q, r are all RBM models. d = 20 dimensions. n = 2000.
- $g_{\mathbf{B},\mathbf{b},\mathbf{c}}(\mathbf{x}) := \frac{1}{Z} \sum_{\mathbf{h}} \exp\left(\mathbf{x}^{\top} \mathbf{B} \mathbf{h} + \mathbf{b}^{\top} \mathbf{x} + \mathbf{c}^{\top} \mathbf{h} \frac{1}{2} \|\mathbf{x}\|^2\right)$ where $\mathbf{h} \in \{-1, 1\}^5$.
- Define $r(\mathbf{x}) := g_{\mathbf{B},\mathbf{b},\mathbf{c}}(\mathbf{x})$ for some randomly drawn $\mathbf{B},\mathbf{b},\mathbf{c}$.
- Let $p(\mathbf{x}) := g_{\mathbf{B}^p, \mathbf{b}, \mathbf{c}}(\mathbf{x})$, and $q(\mathbf{x}) := g_{\mathbf{B}^q, \mathbf{b}, \mathbf{c}}(\mathbf{x})$.
- **B** $\mathbf{B}^p = \mathbf{B}$ but with ϵ added to its first entry $B_{1,1}$
- **B** $^q = \mathbf{B}$ but with 0.3 added to its first entry $B_{1,1}$
- If $\epsilon > 0.3$, q is better. Should reject H_0 .

- Models and and true distribution are very close. Difficult.
- FSSD has access to the density. Higher power than UME, MMD (rely on samples).

Recall Stein witness(\mathbf{v}) = $\mathbb{E}_{\mathbf{y} \sim q}(T_p k_{\mathbf{v}})(\mathbf{y}) - \mathbb{E}_{\mathbf{x} \sim p}(T_p k_{\mathbf{v}})(\mathbf{x})$

Recall Stein witness(
$$\mathbf{v}$$
) = $\mathbb{E}_{\mathbf{y} \sim q}(T_p k_{\mathbf{v}})(\mathbf{y}) - \mathbb{E}_{\mathbf{x} \sim p}(T_p k_{\mathbf{v}})(\mathbf{x})$

$$(T_p k_{\mathbf{v}})(\mathbf{x}) = \frac{1}{\mathbf{p}(\mathbf{x})} \frac{d}{d\mathbf{x}} [k(\mathbf{x}, \mathbf{v}) \mathbf{p}(\mathbf{x})].$$

Then,
$$\mathbb{E}_{\mathbf{x} \sim p}(T_p k_{\mathbf{v}})(\mathbf{x}) = 0$$
.

[Liu et al., 2016, Chwialkowski et al., 2016]

$$\text{Recall Stein witness}(\textcolor{red}{\mathbf{v}}) = \mathbb{E}_{\mathbf{y} \sim q}(T_p k_{\mathbf{v}})(\mathbf{y}) - \mathbb{E}_{\textcolor{red}{\mathbf{x}} \sim p}(T_p k_{\mathbf{v}})(\textcolor{red}{\mathbf{x}})$$

$$(T_p k_{\mathbf{v}})(\mathbf{x}) = \frac{1}{p(\mathbf{x})} \frac{d}{d\mathbf{x}} [k(\mathbf{x}, \mathbf{v}) p(\mathbf{x})].$$
 Normalizer cancels

Then,
$$\mathbb{E}_{\mathbf{x} \sim p}(T_p k_{\mathbf{v}})(\mathbf{x}) = 0.$$

[Liu et al., 2016, Chwialkowski et al., 2016]

Recall Stein witness(
$$\mathbf{v}$$
) = $\mathbb{E}_{\mathbf{y} \sim q}(T_p k_{\mathbf{v}})(\mathbf{y}) - \mathbb{E}_{\mathbf{x} \sim p}(T_p k_{\mathbf{v}})(\mathbf{x})$

$$(T_p k_{\mathbf{v}})(\mathbf{x}) = \frac{1}{p(\mathbf{x})} \frac{d}{d\mathbf{x}} [k(\mathbf{x}, \mathbf{v}) p(\mathbf{x})].$$
 Normalizer cancels

Then, $\mathbb{E}_{\mathbf{x} \sim p}(T_p k_{\mathbf{v}})(\mathbf{x}) = 0.$

[Liu et al., 2016, Chwialkowski et al., 2016]

$$\mathbb{E}_{\mathbf{x} \sim p} \left[(T_p k_{\mathbf{v}})(\mathbf{x}) \right] = \int_{-\infty}^{\infty} \left[\frac{1}{p(\mathbf{x})} \frac{d}{d\mathbf{x}} [k_{\mathbf{v}}(\mathbf{x}) p(\mathbf{x})] \right] p(\mathbf{x}) d\mathbf{x}$$

$$= \int_{-\infty}^{\infty} \frac{d}{d\mathbf{x}} [k_{\mathbf{v}}(\mathbf{x}) p(\mathbf{x})] d\mathbf{x}$$

$$= [k_{\mathbf{v}}(\mathbf{x}) p(\mathbf{x})]_{\mathbf{x} = -\infty}^{\mathbf{x} = \infty}$$

$$= 0$$

(assume $\lim_{|\mathbf{x}|\to\infty} k(\mathbf{v},\mathbf{x})p(\mathbf{x})$)

References I

Interpretable Distribution Features with Maximum Testing Power Wittawat Jitkrittum, Zoltán Szabó, Kacper Chwialkowski, Arthur Gretton NIPS 2016 (oral)

Paper/code: https://github.com/wittawatj/interpretable-test

A Linear-Time Kernel Goodness-of-Fit Test Wittawat Jitkrittum, Wenkai Xu, Zoltán Szabó, Kenji Fukumizu, Arthur Gretton NIPS 2017 (oral, best paper)

Paper/code: https://github.com/wittawatj/kernel-gof