Sébastien Marmin

Research Associate


Sébastien Marmin’s research focuses on probabilistic methods for machine learning, combining uncertainty quantification, deep probabilistic models, Bayesian inference and optimal design for computer experiments, with real-world applications in computer experiments, live sciences, image analysis and mechanical engineering.

He obtained his PhD in January 2018 from the Bern mathematical statistics group, jointly with Centrale Marseille and funded by the National Expert Service in Nuclear Safety. Prior to that he studied engineering at Mines Saint-Étienne in a double degree program (Master’s degree in Applied Mathematics).

He teaches Gaussian Process models in Prof Maurizio Filippone’s course on Advanced Statistical Inference and supervises student projects in data science.


  • Uncertainty Quantification
  • Bayesian Inference
  • Optimal Design for Computer Experiments


  • PhD in Mathematical Statistics, 2018

    University of Bern, joint with Centrale Marseille

  • MSc in Engineering and Applied Mathematics, 2014

    Mines Saint-Étienne

  • Pass the competitive national examination for Grandes Écoles, 2011

    Lycée Faidherbe de Lille

News (2)

Recent Publications

Edit this page